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ABSTRACT

We study cost-effective communication strategies that can be utilized to improve
the performance of distributed learning systems in resource-constrained environ-
ments. First, we propose a new cost-effective partial communication protocol for
distributed learning in sequential decision making. We illustrate that with this
protocol the group obtains the same order of performance they obtain with full
communication. Next, we prove that under the proposed partial communication
protocol communication cost is O(log T ) as opposed to the full communication
that obtains a communication cost of O(T ), where T is the time horizon of the de-
cision making process. Finally, we validate the theoretical results using numerical
simulations.

1 INTRODUCTION

In resource constrained environments, the difficulty of constructing and maintaining large scale
infrastructures limits the possibility of developing a centralized learning system with access to
acquire all information, resources to effectively process obtained information and capacity to make
all decisions. Consequently, developing distributed learning systems, i.e., groups of units who
collectively process information and make decisions, that utilize a minimum amount of resources
is an essential step towards making machine learning practical in such constrained environments.
In general, most distributed learning strategies allow individuals to make decisions using locally
available information (Kalathil et al., 2014; Landgren et al., 2016a), i.e., information that they observe
or is communicated to them from their neighbors. However, the performance of such systems is
strongly dependent on the underlying communication structure. Such dependence inherently leads to
a trade-off between communication cost and performance. Our goal is to develop high performance
distributed learning systems with minimal communication cost.

In particular, we focus on developing cost-effective distributed learning techniques for sequential
decision making under stochastic outcomes. This work is motivated by the growing number of real-
world applications such as clinical trials, recommender systems, and user-targeted online advertising.
Consider a set of organizations networked to recommend educational programs to online users
under high demand. Each company makes a series of sequential decisions about which programs to
recommend according to the user feedback (Warlop et al., 2018; Féraud et al., 2018). Similarly to
it, consider a set of small pharmaceutical companies conducting experimental drug trials (Tossou
& Dimitrakakis, 2016; Durand et al., 2018). Each company makes a series of sequential decisions
about the drug administration procedure according to the observed patient feedback. In both cases
received feedback is stochastic i.e., feedback is associated with some uncertainty. This is due to the
possibility that at different time steps online users (patients) can experience the same program (drug)
differently due to external and internal factors such as environmental conditions and state of their
mind. Establishing a communication network that facilitates full communication: each company
shares all feedback immediately with others, can significantly improve the performance of these
systems. However, oftentimes communication can be expensive and time-consuming. Under full
communication, the amount of communicated data is directly proportional to the time horizon of the
decision making process. In a resource constrained environment when the decision making process
continues for a long time, this communication protocol becomes impractical. We aim to address this
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problem by proposing a partial communication strategy that obtains the same order of performance
as full communication protocol while using a significantly small amount of data communication.

To solve this problem, we consider the bandit framework, a mathematical model that has been
developed to model sequential decision making under stochastic outcomes (Lai & Robbins, 1985;
Robbins, 1952). Consider a group of agents (units) making sequential decisions in an uncertain
environment. Each agent is faced with the problem of repeatedly choosing an option from a given
fixed set of options (Kalathil et al., 2014; Landgren et al., 2016a;b; Martı́nez-Rubio et al., 2019). After
every choice, each agent receives a numerical reward drawn from a probability distribution associated
with the chosen option. The objective of each agent is maximizing the individual cumulative reward
while contributing to maximizing the group cumulative reward. The best strategy in this situation is
to repeatedly choose the optimal option, i.e., the option that provides the maximum average reward.
However, agents are unaware of the expected reward values of the options. Each individual is required
to execute a combination of exploiting actions i.e., choosing the options that are known to provide
high rewards and exploring actions i.e., choosing the lesser known options in order to identify the
options that might potentially provide higher rewards. This process is sped up through collective
learning by sharing reward values and actions with their neighbors. We consider sharing information
only when agents execute exploiting actions as exploit based communication. Similarly, we consider
sharing information only when agents execute exploring actions as explore based communication.
Note that

full communication = exploit based communication + explore based communication.

We propose a new partial communication protocol that shares information only when agents execute
an exploring action. We illustrate that explore based communication obtains the same order of
performance as full communication while incurring a significantly small communication cost.

Key Contributions In this work, we study effective communication protocols in sequential decision
making. Our contributions include the following:

• We propose a new cost-effective partial communication protocol for distributed learning in
sequential decision making.

• We illustrate that with this protocol the group obtains the same order of performance they
obtain with full communication.

• We prove that under the proposed partial communication protocol communication cost is
O(log T ) as opposed to the full communication that obtains a communication cost of O(T ),
where T is the number of decision making steps.

Related Work A large number of previous works (Kalathil et al., 2014; Landgren et al., 2016a;b;
2018; Martı́nez-Rubio et al., 2019) have considered distributed bandit problem without a communica-
tion cost. They analyze how communication structure affects individual and group performance. A
decentralized multi-agent setting is considered in Kalathil et al. (2014); Landgren et al. (2016a;b);
Martı́nez-Rubio et al. (2019). Landgren et al. (2016a;b) use a running consensus algorithm to update
estimates and provide a graph structure-dependent performance measure that predicts the relative
performance of agents. Martı́nez-Rubio et al. 2019 provides an improved bound for this problem
by proposing an accelerated consensus procedure. Szörényi et al. 2013 considers a P2P communi-
cation where an agent is only allowed to communicate with two other agents at each time step. A
communication strategy where agents observe the rewards and choices of their neighbors according
to a leader-follower setting is considered in Landgren et al. (2018). Decentralized bandit problems
with communication costs are considered in the works of Tao et al. 2019; Wang et al. 2020. Tao
et al. (2019) considers the pure exploration bandit problem with a communication cost equivalent to
the number of times agents communicate. Wang et al. (2020) proposes an algorithm that achieves
near-optimal performance with a communication cost equivalent to the amount of data transmitted.
Authors (2020) proposes a communication rule where agents observe their neighbors when they
execute an exploring action.
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2 METHODOLOGY

2.1 PROBLEM FORMULATION

In this section we present the mathematical formulation of the problem. Consider a group of K
agents faced with the same N -armed bandit problem for T time steps. In this paper we use the
terms arms and options interchangeably. Let Xi be a sub-Gaussian random variable with variance
proxy σ2

i , which denotes the reward of option i ∈ {1, 2, . . . , N}. Define E (Xi) = µi as the expected
reward of option i. We define the option with maximum expected reward as the optimal option
i∗ = arg max{µ1, . . . , µN}. Let ∆i = µi∗ − µi be the expected reward gap between option i∗ and
option i. Let I{ϕkt=i} be the indicator random variable that takes value 1 if agent k chose the option i
at time t and 0 otherwise.

We define the communication network as follows. Let G(V, E) be a fixed non trivial graph that
defines neighbors, where V denotes the set of agents and e(k, j) ∈ E denotes the communication
link between agent k and j. Let It{·,k} be the indicator variable that takes value 1 if agent k shares
its reward value and choice with its neighbors at time t. Since agents can send reward values and
choices only to their neighbors we see that It{j,k} = 0,∀k, j, t such that e(j, k) /∈ E .

2.2 OUR ALGORITHM

Let µ̂ki (t) be the estimated mean of option i by agent k at time t. Let nki (t) and Nk
i (t) denote the

number of samples of option i and the number of observations of option i, respectively, obtained
by agent k until time t. Nk

i (t) is equal to nki (t) plus the number of observations of option i agent k
obtained from its neighbors until time t. So, by definition

nki (t) =

t∑
τ=1

I{ϕkτ=i}, Nk
i (t) =

t∑
τ=1

K∑
j=1

I{ϕjτ=i}I
τ
{k,j}.

Assumption 1 Initially, all the agents are given a reward value for one sample from each option.

Initially, the given reward values are used as the empirical estimates of the mean values of the options.
Let Xk

i (0) denote the reward received initially by agent k for option i. The estimated mean value is
calculated by taking the simple average of the total reward observed for option i by agent k until time
t:

µ̂ki (t) =
Ski (t) +Xk

i (0)

Nk
i (t) + 1

where Ski (t) =
∑t
τ=1

∑k
j=1XiI{ϕjτ=i}I

τ
{k,j}.

The goal of each agent is to maximize its individual cumulative reward while contributing to maxi-
mizing the group cumulative reward. In this work, we consider the case with known variance proxy.
We formally state this assumption as follows.

Assumption 2 We assume that agents know the variance proxy σ2
i of the rewards associated with

each option.

Assumption 3 When more than one agent chooses the same option at the same time they receive
rewards independently drawn from the probability distribution associated with the chosen option.

To realize the goal of maximizing cumulative reward, agents are required to minimize the number
of times they sample sub-optimal options. Thus, each agent employs an agent-based strategy that
captures the trade-off between exploring and exploiting by constructing an objective function that
strikes a balance between the estimation of the expected reward and the uncertainty associated with
the estimate (Auer et al., 2002). Each agent samples options according to the following rule.
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Definition 1 (Sampling Rule) The sampling rule {ϕkt }T1 of the agent k at time t ∈ {1, . . . , T} is
defined as

I{ϕkt+1=i} =

{
1 , i = arg max{Qk1(t), · · · , QkN (t)}
0 , o.w.

with

Qki (t) , µ̂ki (t) + Cki (t), Cki (t) , σi

√
2(ξ + 1) log (t)

Nk
i (t) + 1

, and ξ > 1.

Here the term Cki (t) is associated with the uncertainty of the estimated mean of the option i. Note that
when the number of observations taken from the option i is high, the uncertainty associated with the
estimated mean of the option i is low and vice-versa. Since Cki (t) and number of observations Nk

i (t)
are inversely related, where high Cki (t) corresponds to high uncertainty and low Cki (t) corresponds
to low uncertainty.

Exploiting actions correspond to choosing the options with high estimated mean values, i.e., an
option with maximum objective function value is same as the option with maximum estimated mean
value, and exploring actions correspond to choosing options with high uncertainties, i.e., option
with maximum objective function value is different from the option with maximum estimated mean
value. Each agent can reduce the number of samples it takes from sub-optimal options by leveraging
communication to reduce the uncertainty associated with the estimates of sub-optimal options. Thus
in resource constrained environments, it is desirable to communicate reward values obtained from
sub-optimal options only. Oftentimes executing exploring actions leads to taking samples from
sub-optimal options. Thus we define a partial communication protocol such that agents share their
reward values with their neighbors only when they execute an exploring action.

Followed by this intuition we propose a partial communication rule as follows:

Definition 2 (Communication Rule) The communication rule of the agent k at time t ∈ {1, . . . , T}
is defined as

It+1
{·,k} =

{
1 , ϕkt+1 6= arg max{µ̂k1(t), · · · , µ̂kN (t)}
0 , o.w.

3 RESULTS

The goal of maximizing the cumulative reward is equivalent to minimizing the cumulative regret,
which is the loss incurred by the agent through sampling sub-optimal options. We analyze the
performance of the proposed algorithm using expected cumulative regret and expected communication
cost.

For a group of K agents facing N -armed bandit problem for T time steps, expected group cumulative
regret can be given as

E (R(T )) =

N∑
i=1

K∑
k=1

∆iE
(
nki (T )

)
.

Thus, the expected group cumulative regret can be minimized by minimizing the expected number of
samples taken from suboptimal options.

Communication Cost Recall that through communication agents share their reward values and
actions with their neighbors. Consequently, each communicated message has the same length. Thus
we define the communication cost as the total number of times the agents share their reward values
and actions during the decision making process. Let L(T ) be the group communication cost up to
time T. Then we have,

L(T ) =

K∑
k=1

T∑
t=1

It{·,k}

Note that under full communication expected communication cost is O(T ). Now we processed to
analyze the expected communication cost under the proposed partial communication protocol.
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Lemma 1 Let E(L(T )) be the expected cumulative communication cost of the group under commu-
nication rule given in Definition 2. Then we have

E(L(T )) = O(log T )

The proof of Lemma 1 follows from Lemma 3 in the paper Authors (2020).

Experimental Results We provide numerical simulation results illustrating the performance of the
proposed sampling rule and the communication rule. For all the simulations presented in this section,
we consider a group of 100 agents (K = 100) and 10 options (N = 10) with Gaussian reward
distributions. We let the expected reward value of the optimal option be 11, the expected reward of
all other options be 10, and the variance of all options be 1. We consider the communication network
(Graph G) as a complete graph. We provide results with 1000 time steps (T = 1000) using 1000
Monte Carlo simulations with ξ = 1.01.
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(a) Expected cumulative group regret of 100
agents using the sampling rule given in Defi-
nitions 1 under full communication, explore
based communication, exploit based commu-
nication and no communication.
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(b) Expected cumulative communication cost
per agent for a group of 100 agents under
full communication, explore based communi-
cation, exploit based communication and no
communication.

Figure 1: Performance of a group of 100 agents using the sampling rule given in Definition 1 under
different communication strategies.

Figure 1(a) presents expected cumulative group regret for 1000 time steps. This illustrates that both
full communication and explore based communication significantly improves the performance of
the group compared to no communication. Performance improvement obtained by utilizing exploit
based communication is insignificant compared to the performance under no communication. Further,
this shows that the performance of explore based communication is of the same order as the group
performance under full communication. This illustrates that sharing reward values obtained through
executing exploiting actions do not contribute to significant performance improvement. However, it
incurs a significant communication cost. Figure 1(b) presents the results for expected cumulative
communication cost per agent for 1000 time steps. This illustrates that communication cost incurred
by explore based communication is significantly smaller than the cost incurred by full communication.
Communication cost incurred by exploit based communication is close to the cost incurred by full
communication. These results illustrate that explore based communication protocol incurs only a
small communication cost while significantly improving the group performance.

4 DISCUSSION AND CONCLUSION

We studied the development of cost-effective communication protocols that are desirable in resource
constrained environments. In particular, we proposed a new partial communication protocol for
distributed multi-armed bandit problem. We illustrated that the proposed communication protocol
has a significantly small communication cost as opposed to full communication while obtaining the
same order of performance. Another aspect of this problem is developing effective communication
protocols for the networks that are prone to communication errors. A future extension for this problem
can be analyzing and improving the performance of the proposed communication protocol under
random communication failures.
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