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ABSTRACT

Machine learning applications in the legal field are numerous and diverse. In order
to make contributions to both the machine learning community and the legal com-
munity, we have made efforts to create a model compatible with the classification
of text sequences, valuing the interpretability of the results. The purpose of this pa-
per is to classify brazilian legal proceedings in three possible status classes, which
are (i) archived proceedings, (ii) active proceedings and (iii) suspended proceed-
ings. Our approach is composed by natural language processing, supervised and
unsupervised deep learning models and performed remarkably well in the clas-
sification task. Furthermore we had some insights regarding the patterns learned
by the neural network applying tools to make the results more interpretable. Our
work may help big public and private organizations to better handle their portfo-
lios and will add value to Brazilian society as a whole.1

1 INTRODUCTION

In this work we make extensive use of natural language processing (NLP) and machine learning tools
to classify legal proceedings. Although there are some efforts to apply machine learning and NLP
in the legal world, there have not been any to solve a problem similar to ours – as far as we know –,
then we are going to talk about some applications that inspired us. For example, Aletras et al. (2016)
make use of natural language processing tools to extract features such as N-Grams and Topics and
then perform a binary classification task using Support Vector Machines (SVM) on whether cases
referred to the European Court of Human Rights (ECHR) contain, in its report, any violated human
rights article - the most optimistic accuracy rate was 84%. da Silva et al. (2018), a recent Brazilian
study, makes use of Convolutional Neural Networks to classify documents analyzed by the Brazilian
Supreme Court (STF), achieving significant results. The authors then reached a result of 90.35 %
accuracy and 0.91 F1 score.

2 OBJECTIVE

The objective of this paper is to develop a model for the classification of legal proceedings in three
possible classes of status: (i) archived proceedings, (ii) active proceedings and (iii) suspended pro-
ceedings. Each proceeding is made up of a sequence of short texts written by the courts that we will
call ”motions”, which relate to the current state of proceedings, but not necessarily to their status.
The three possible classes are given in a certain instant in time, which may be temporary or perma-
nent, and are decided by the courts. In addition to focusing on the construction of a good classifier,
we will also value the interpretability of the results achieved, given the importance of understanding
the decisions made by models in the legal area. These criteria have been chosen because they are
a key feature to any task related to legal proceedings in Brazil - our work may help big public and
private organizations to better handle their portfolios and will add value to Brazilian society as a
whole.

1The code (Jupyter Notebooks) used in this work as well as the datasets can be found in https:
//bit.ly/36yJZY3. The data can also be found in https://doi.org/10.6084/m9.figshare.
11750061.v1.
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3 DATA

Our data is composed by two datasets: a dataset of 3 · 106 unlabelled motions and a dataset contain-
ing 6449 legal proceedings, each with an individual and variable number of motions, but which have
been labeled by law experts. These datasets are random samples from the first (São Paulo) and third
(Rio de Janeiro) biggest State Courts. State Courts handle the most variable types of cases through-
out the Courts in Brazil, and are responsible for 80% of the total amount of lawsuits. Therefore,
these datasets are representative of a very significative portion of the variable use of language and
expressions in Courts vocabulary. Since classifying sets of texts is a complex task and our dataset
of labeled proceedings is not very large, we used the unlabelled texts dataset for the embedding
learning of words and expressions in the legal context and we used the second dataset to create a
model for the legal proceedings classification. The legal proceedings’ can be splitted in: (i) Archived
(class 1) 47.14% of total, with 3040 proceedings, (ii) Active (class 2) 45.23% of total, with 2917
proceedings and (iii) Suspended (class 2) 7.63% of total, with 492 proceedings.

As soon as we got the text data, we had to preprocess it. The first step before applying any Natural
Language Processing or Machine Learning model to text is to preprocess the raw data obtained in
text form. This step is crucial to the success of any application, as we make the analysis more
computer friendly, avoiding, among other things, over-parameterization of the models used, which
can undermine their performance. We applied the three points below, which are standard in the
literature of NLP: (i) uppercase to lowercase conversion, (ii) stop words removal and (iii) removal
of undesirable elements, such as punctuation.

4 METHODOLOGY

4.1 EMBEDDING LEARNING AND REPRESENTATION OF TEXTS

We used a mass of 3 · 106 motion texts, all from unlabelled proceedings, to learn vectors representa-
tions for word and expressions. We used the method proposed by Mikolov et al. (2013b) in order to
identify which sets of 2 to 4 words that generally appear together and which should be considered as
unique tokens. After tokenization, we then use the model specified in Mikolov et al. (2013a) (CBOW
Word2Vec) (size=100, window=5)2 and extract the vector representations for each of the tokens in
the vocabulary. Then we normalized the learned representations to have a unitary euclidean norm -
this is important as we will see in Section 4.3. After all, we represent each motion/text by a matrix
of dimensions R ×D where R is the maximum number of tokens allowed for each of the texts and
D the size of the embeddings - in our case D = 100. We have noticed that over 90% of the motions
have a maximum of 30 tokens, so we decided to set a ceiling of R = 30 tokens, selecting the first
tokens.

4.2 CONSTRUCTION OF THE NEURAL NETWORK FOR LEGAL PROCEEDING CLASSIFICATION

Our legal experience is that the last 5 motions contain enough information for our purpose. Then,
we separated the last five (5) motions/texts from each of the legal proceedings and put them in
chronological order, using zero-padding when necessary. To extract features from each motion we
used a convolutional layer (Kim, 2014) withK filters that run through each text. After extracting the
features, they pass through a ReLU activation function and then are selected according to the max-
over-time pooling procedure proposed by Collobert et al. (2011), that is, we kept only one feature per
filter, the one with the highest value - each motion/text will be represented by onlyK numbers3, that
feed the Recurrent Neural Network (RNN) with Long Short-Term Memory LSTM units (Hochreiter
& Schmidhuber, 1997) with hidden state size H . After processing the data using the RNN, the legal
proceeding is then classified by a Softmax function. In order to give an interpretable appeal to the
solution, as we show ahead, we constrained the euclidean norm of filters to be equal one. There is
an illustration of the neural network used in Figure 1.

2We tested many configurations, e.g. windows=5, 10, 15 and size=50, 100, 150, and we chose to work with
the more parsimonious and most performing one, according to the classification results.

3Thus, each legal proceeding is represented by 5K numbers (5 motions and K features per motion)
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Figure 1: Neural Network Architecture

4.3 INTERPRETABILITY

4.3.1 WHAT ARE THE FILTERS LOOKING FOR?

Now that we know how the network works in classifying legal proceedings, it’s important to un-
derstand what are the features extracted by the convolutional layer. Let (i) i be the index of a legal
proceeding 4, (ii) t ∈ {−5, ... ,−1} a index for a text/motion of i proceeding, where −1 denotes
the most current text and −5 the least current text taken into account, (iii) n ∈ [30] an index 5 of
embedded tokens in the text t from proceeding i and (iv) fk ∈ R100 is the vector representing the
k-th convolutional filter, k ∈ [K]. We then define the following quantity zitnk, which is the feature
extracted by the filter fk from tokem xitn ∈ R100, that is, n-th tokem from t-th motion/text from
i-th proceeding:

zitnk = ReLU(xitn · fk) (1)

Note that we removed the constant neuron6, which represents the bias. Furthermore, the final feature
extracted by the fk filter from the t-th motion/text from i-th proceeding right after applying max-
over-time pooling procedure is z∗itk = max {zitnk}30n=1. The 5K extracted features are processed
by the recurrent neural network outputting three probabilities, one for each class. As we discussed
earlier, each of the embeddings representations and filters were constrained to have unitary euclidean
norm and that means the scalar product between the filters and embeddings representations will
give us the value of the cosine of the shortest angle formed between the vectors, i.e. the cosine
similarity between they. Thus, if θitnk is the shortest angle formed between the vectors xitn and
fk we can write zitnk = ReLU

[
cos(θitnk)

]
. In the learning process, the network aligns the filters

representations to those representations of the tokens that help the most in the task of classifying
legal proceedings. Then, after the training phase, we just have to check which are the closest tokens’
representations to our filters’ representations to gain some interpretability.

4.3.2 HOW DO FEATURES EXTRACTED BY EACH FILTER RELATE TO CLASSIFICATION?

To interpret how each filter relates to the classification task, we will use Partial Dependence Plots7.
To help us, see that when we want to talk about the features themselves, i.e. random variables and
vectors, and not their instances in the i individual, we can rewrite z∗itk as z∗tk, for example. In this
paper, we will calculate the partial dependence functions according to the test set data and center
it on zero, so that it is easier to make comparisons between plots - we will be interested in average
variations in the probabilities of the j class given variations in an specific feature z∗tk.

4i can represent an out of sample proceeding.
5Consider [N] = {1, ... , N}.
6We kept it in all other occasions.
7See Molnar (2019) for a more detailed explanation.
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Table 1: Aggregate analysis of evaluation metrics

Macro averaging Micro averaging
Features F1 Score Precision Recall F1 Score Precision Recall

CNN 0.89 ±0.02 0.92 ±0.02 0.87 ±0.03 0.93 ±0.01 0.93 ±0.01 0.93 ±0.01
Doc2Vec 0.82 ±0.03 0.85 ±0.03 0.8 ±0.03 0.85 ±0.01 0.86 ±0.02 0.85 ±0.02
TFIDF 0.88 ±0.02 0.93 ±0.02 0.85 ±0.03 0.91 ±0.01 0.92 ±0.01 0.92 ±0.02

4.4 HYPERPARAMETER TUNING AND DATASET SPLITTING

We have chosen to keep some of the hyperparameters fixed and to tune the rest of them in a sim-
ple cross-validation procedure using the grid search approach. The ones fixed and their values
are: (i) ”Optimizer” = ”Adam”, (ii) ”Beta 1” (Adam) = 0.9, (iii) ”Beta 2” (Adam) = 0.999, (iv)
”Learning rate” = 0.001, (v) # of Epochs = 200 and (vi) Batch size = 500. The ones to be
tuned and values testes are: (i) # of Convolutional filters (K) = (3, 5, 8, 12), (ii) LSTM hid-
den state size (H) = (10, 30, 50, 75, 100) and (iii) LSTM weights l1 penalization strength (λ) =
(.0, .0001, .0003, .0005, .0007, .0009, .0011, .0013, .0015, .0016, .0018, .002, .0025, .003).
In order to train and assess our classifier and tune hyperparameters, we splitted at random our la-
beled dataset in three parts: training set (70%), validation set (10%) and test set (20%). We used the
training set to fit the model, the validation set to choose the best hyperparameters and the test set
just to check the performance of the final model.

5 RESULTS

5.1 HYPERPARAMETERS

Our criteria to choose the best combination of hyperparameters was to choose those values who gave
us the higher accuracy in the validation set. Out of 280 possible combinations of values we chose
the following values for the tuned hyperparameters: (i) K = 12, (ii) H = 10 and (iii) l1-λ = .0001.

5.2 PROCEEDING CLASSIFICATION TASK PERFORMANCE

In order to present the results and compare them to those obtained by similar alternatives, we will
consider two other ways to extract features from the texts (other than convolutional filters), maintain-
ing the recurrent neural network part, as it is important for us to take into account the chronological
order of the facts. The other two ways to extract features are applications of the Doc2Vec (Le &
Mikolov, 2014) and TFIDF (Salton & McGill, 1986) models, which were trained beforehand in the
unlabeled dataset. For the Doc2Vec alternative we kept the specifications for the Word2Vec model
that we discussed in Section 4.1. For the TFIDF alternative, we imposed a ceiling of 2000 tokens,
keeping the more frequents in the corpus. For both alternatives we applied the processing steps
described in Section 3 and 4.18. First, it is important to say that our main model had the greatest
accuracy (0.93±0.01) compared to the Doc2Vec (0.85±0.02) and TFIDF (0.92±0.02) alternatives.
Moreover, as one can see in Table 19, we obtained excellent results with our main model proposal as
well as the second best alternative. Despite our main proposal achieving similar results to another
option, it is in its simplicity10 and interpretability that this solution stands out, as we will see next.

5.3 INTERPRETABILITY OF RESULTS

5.3.1 WHAT ARE THE FILTERS LOOKING FOR?

In order to better understand what are the patterns extracted by the convolutional layer of the neural
network, let’s look at the embeddings representations of tokens in our vocabulary which have the

8The hyperparameters for the alternative models were tuned as it is described in the Supplementaty Material.
9The 0.95 confidence intervals were calculated using a bootstrap procedure.

10Our main model has 2,153 trainable weights while the Doc2Vec benchmark has 15,813 and the TFIDF
alternative has 243,813. One can see that our main model is much simpler, then less prone to overfitting and
easier/faster to train.
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closest representations to the filters according to cosine similarity. As long as we have 12 filters in
our model, which is a big quantity, we are going to focus in three specific filters (1, 9 and 11), which
bring interesting results - the full results will be available in the Supplementary Material. Regarding
the filter 1, we have11: (i) ”final storage of docket” (0.46), (ii) ”final remittance to origin” (0.45).
Regarding the filter 9, we have: (i) ”emitted” (0.47), (ii) ”certificate” (0.43). Regarding the filter 11,
we have: (i) ”temporarily stored docket” (0.55), (ii) ”docket remain in clerk” (0.5). It seems filter 1
and 11 are important for us while filter 9 search for patters not directly linked to the classification.

5.3.2 HOW DO FEATURES EXTRACTED BY EACH FILTER RELATE TO CLASSIFICATION?

The patterns extracted by filter 1, in Figure 2, explain which legal proceedings are likely to be
archived but not suspended or active, which can easily make sense when one sees those expressions
linked to filter 1, e.g. ’final storage of docket’ and ’final remittance to origin’. Regarding to filter
11, it is possible to notice that the partial dependence functions are decreasing in all plots but the
one related to the suspended proceedings. This is understandable because the expressions linked to
filter 11, as seen in Section 5.3.1, are more common to appear when a proceeding is suspended, e.g.
’temporarily stored docket’. On the other hand, patterns extracted by filter 9, presented in Figure 2,
have almost no impact in the decision of the neural network as expected. Also, it seems that more
recent information is more important. Overall, the results are very intuitive.

Figure 2: Partial dependence plots

6 CONCLUSION

This work aimed to develop a model for the classification of legal processes composed of sequential
texts. During the development of the model, we wanted to have a model that performed very well
on the classification task, had a parsimonious architecture and that we could gain insight into how
decisions are made. We believe that the major contribution of this work is precisely the way we
solve an important problem, which is classifying legal proceedings’ status, combining several types
of techniques to analyze sequences of texts in chronological order, which are so common in the legal
context. The results obtained were satisfactory both in terms of classification and interpretability,
which also brings importance to this work.

11Cosine similarity in parentheses.
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