
Under review as a conference paper at ICLR 2020

HYPEREMBED: TRADEOFFS BETWEEN RESOURCES
AND PERFORMANCE IN NLP TASKS WITH HYPERDI-
MENSIONAL COMPUTING ENABLED EMBEDDING OF
n-GRAM STATISTICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in Deep Learning have led to a significant performance increase
on several NLP tasks, however, the models become more and more computa-
tionally demanding. Therefore, this paper tackles the domain of computation-
ally efficient algorithms for NLP tasks. In particular, it investigates distributed
representations of n-gram statistics of texts. The representations are formed us-
ing hyperdimensional computing enabled embedding. These representations then
serve as features, which are used as input to standard classifiers. We investigate
the applicability of the embedding on one large and three small standard datasets
for classification tasks using nine classifiers. The embedding achieved on par
F1 scores while decreasing the time and memory requirements by several times
compared to the conventional n-gram statistics, e.g., for one of the classifiers on a
small dataset, the memory reduction was 6.18 times; while train and test speed-ups
were 4.62 and 3.84 times, respectively. For many classifiers on the large dataset,
the memory reduction was about 100 times and train and test speed-ups were over
100 times. More importantly, the usage of distributed representations formed via
hyperdimensional computing allows dissecting the strict dependency between the
dimensionality of the representation and the parameters of n-gram statistics, thus,
opening a room for tradeoffs.

1 INTRODUCTION

Recent work (Strubell et al., 2019) has brought significant attention by demonstrating potential cost
and environmental impact of developing and training state-of-the-art models for Natural Language
Processing (NLP) tasks. The work suggested several countermeasures for changing the situation.
One of them recommends a concerted effort by industry and academia to promote research of more
computationally efficient algorithms. The main focus of this paper falls precisely in this domain.

In particular, we consider NLP systems using a well-known technique called n-gram statistics. The
key idea is that hyperdimensional computing (Kanerva, 2009) allows forming distributed repre-
sentations of the conventional n-gram statistics (Joshi et al., 2016). The use of these distributed
representations, in turn, allows trading-off the performance of an NLP system (e.g., F1 score) and
its computational resources (i.e., time and memory). We demonstrate the usefulness of hyperdimen-
sional computing-based embedding, which is highly time and memory efficient. Our experiments
on a well-known dataset (Braun et al., 2017) for intent classification show that it is possible to re-
duce memory usage by ∼ 10x and speed-up training by ∼ 5x without compromising the F1 score.
Several important use-cases are motivating the efforts towards trading-off the performance of a sys-
tem against computational resources required to achieve that performance: high-throughput systems
with an extremely large number of requests/transactions (the power of one per cent); resource-
constrained systems where computational resources and energy are scarce (edge computing); green
computing systems taking into account the aspects of environmental sustainability when considering
the efficiency of algorithms (AI HLEG, 2019).

1

Under review as a conference paper at ICLR 2020

2 METHODS

2.1 CONVENTIONAL n-GRAM STATISTICS

An empty vector s stores n-gram statistics for an input textD. D consists of symbols from the alpha-
bet of size a; ith position in s keeps the counter of the corresponding n-gram Ai = 〈S1,S2, . . . ,Sn, 〉
from the set A of all unique n-grams; Sj corresponds to a symbol in jth position of Ai. The dimen-
sionality of s equals the total number of n-grams in A and calculated as an. Usually, s is obtained
via a single pass-through D using the overlapping sliding window of size n. The value of a position
in s (i.e., counter) corresponding to a n-gram observed in the current window is incremented by one.
In other words, s summarizes how many times each n-gram in A was observed in D.

2.2 SUBWORD SEMANTIC HASHING

Subword Semantic Hashing (SemHash) is described in details in Shridhar et al. (2019); Huang et al.
(2013). SemHash represents the input sentence in the form of subword tokens using a hashing
method reducing the collision rate. These subword tokens act as features to the model and can be
used as an alternative to word/n-gram embeddings. For a given input sample text T , e.g., “I have a
flying disk”, we split it into a list of words ti. The output of the split would look as follows: [“I”,
“have”, “a”, “flying”, “disk”]. Each word is then passed into a prehashing function H(ti). H(ti)
first adds a # at the beginning and at the end of ti. Then it generates subwords via extracting n-
grams (n=3) from #ti#, e.g.,H(have) = [#ha, hav, ave, ve#]. These tri-grams are the subwords
denoted as tji , where j is the index of a subword. H(ti) is then applied to the entire text corpus to
generate subwords via n-gram statistics. These subwords are used to extract features for a given
text.

2.3 EMBEDDING n-GRAM STATISTICS INTO AN HD VECTOR

Alphabet’s symbols are the most basic elements of a system. We assign each symbol with a ran-
dom d-dimensional bipolar HD vector. These vectors are stored in a matrix (denoted as H , where
H ∈ [d × a]), which is referred to as the item memory, For a given symbol S its HD vector is
denoted as HS ∈ {−1,+1}[d×1]. To manipulate HD vectors, hyperdimensional computing defines
three key operations1 on them: bundling2 (denoted with + and implemented via position-wise addi-
tion), binding (denoted with� and implemented via position-wise multiplication), and permutation3

(denoted with ρ).

Three operations above allow embedding n-gram statistics into distributed representation (HD vec-
tor) Joshi et al. (2016). First, H is generated for the alphabet. A position of symbol Sj in Ai

is represented by applying ρ to the corresponding HD vector HSj j times, which is denoted as
ρj(HSj). Next, a single HD vector for Ai (denoted as mAi

) is formed via the consecutive binding
of permuted HD vectors ρj(HSj) representing symbols in each position j of Ai. For example, the
trigram ‘cba’ will be mapped to its HD vector as follows: ρ1(Hc)� ρ2(Hb)� ρ3(Ha). In general,
the process of forming HD vector of an n can be formalized as follows:

mAi
=

n∏
j=1

ρj(HSj),

where
∏

denotes the binding operation when applied to n HD vectors. Once it is known how to get
mAi

, embedding the conventional n-gram statistics stored in s (see section 2.1) is straightforward.

1Please see Kanerva (2009) for proper definitions and properties of hyperdimensional computing operations.
2The bundling operation allows storing information in HD vectors(Kleyko et al. (2016)); if several copies of

any HD vector are included (e.g., 2HS1 +HS2), the resultant HD vector is more similar to the dominating HD
vector than to other components. Since this paper does not go into deep analytical details of why HD vectors
allow embedding the conventional n-gram statistics, the diligent readers are referred to Frady et al. (2018) for
the relevant analysis.

3It is convenient to use ρ to bind symbol’s HD vector with its position in a sequence.

2

Under review as a conference paper at ICLR 2020

HD vector h corresponding to s is created by bundling together all n-grams observed in the data:

h =

an∑
i=1

simAi
=

an∑
i=1

si

n∏
j=1

ρj(HSj),

where
∑

denotes the bundling operation when applied to several HD vectors. Note that h is not
bipolar, therefore, in the experiments below we normalized it by its `2 norm.

3 EMPIRICAL EVALUATION

(a)

(b)

(c)

(d)

Figure 1: MLP results vs. the dimensionality of HD vectors on: (a) the AskUbuntu dataset. (b) the
Chatbot dataset. (c) the WebApplication dataset. (d) the 20NewsGroups dataset.

3.1 RESULTS

First, we report the results of the MLP classifier on all datasets as it represents a widely used class of
algorithms – neural networks. The goal of the experiments was to observe how the dimensionality
of HD vectors embedding n-gram statistics affects the F1 scores and the computational resources.
Figures 1a-1d present the results for the AskUbuntu, Chatbot, WebApplication, and 20NewsGroups

3

Under review as a conference paper at ICLR 2020

Table 1: Performance of all classifiers for the AskUbuntu dataset.

F1 score Resources: SH vs. HD Resources: SH vs. BPE
Classifier SH BPE HD Tr. Ts. Mem. Tr. Ts. Mem.
MLP 0.92 0.91 0.91 4.62 3.84 6.18 1.67 1.61 1.72
Passive Aggr. 0.92 0.93 0.90 4.86 3.07 6.31 2.19 2.14 1.76
SGD Classifier 0.89 0.89 0.88 4.66 3.50 6.31 1.94 2.16 1.76
Ridge Classifier 0.90 0.91 0.90 3.91 4.74 6.31 1.63 1.62 1.76
KNN Classifier 0.79 0.72 0.82 2.11 4.53 8.48 1.56 1.79 1.76
Nearest Centroid 0.90 0.89 0.90 1.66 3.41 6.32 1.35 1.87 1.76
Linear SVC 0.90 0.92 0.90 1.18 2.39 6.29 0.91 1.91 1.76
Random Forest 0.88 0.90 0.86 0.91 1.09 6.11 1.15 0.96 1.75
Bernoulli NB 0.91 0.92 0.85 2.30 3.72 6.34 1.96 2.42 1.76

datasets, respectively. The dimensionality of HD vectors varied as 2k, k ∈ [5, 14]. All figures
have an identical structure. Shaded areas depict 95% confidence intervals. Left panels depict the
F1 score while right panels depict the train and test speed-ups as well as memory reduction. Note
that there are different scales (y-axes) in the right panels. A solid horizontal line indicates 1 for the
corresponding y-axis, i.e., the moment when both models consume the same resources.

The results in all figures are consistent in a way that up to a certain point F1 score was increasing
with the increasing dimensionality. For the small datasets even small dimensionalities of HD vectors
(e.g., 32 = 25) led to the F1 scores, which are far beyond random. For example, for the AskUbuntu
dataset, it was 84% of the conventional n-gram statistics F1 score. For the values above 512 the
performance saturation begins. Moreover, the improvements beyond 2048 are marginal. The situ-
ation is more complicated for the 20NewsGroups dataset where for 32-dimensional HD vectors F1

score is fairly low though still better than a random guess (0.05). However, it increases steeply until
1024 and achieves its maximum at 4096 being 92% of the conventional n-gram statistics F1 score.
The dimensionalities above 4096 showed worse results.

When it comes to computational resources, there is a similar pattern for all the datasets. The train/test
speed-ups and memory reduction are diminishing with the increased dimensionality of HD vectors.
At the point when the dimensionality of HD vectors equals the size of the conventional n-gram
statistics, both approaches consume approximately the same resources. These points in the figures
are different because the datasets have different size of n-gram statistics: 3729, 2753, 2734, and
192652, for the AskUbuntu, Chatbot, WebApplication, and 20NewsGroups datasets, respectively.
Also, for all datasets, the memory reduction is higher than the speed-ups. The most impressive
speed-ups and reductions were observed for the 20NewsGroups dataset (e.g., 186 times less memory
for 1024-dimensional HD vectors). This is due to its large size it contains a huge number of n-
grams resulting in large size of the n-gram statistics. Nevertheless, even for small datasets, the gains
were noticeable. For instance, for the WebApplication dataset at 256 F1 score was 99% of the
conventional n-gram statistics while the train/test speed-ups and the memory reduction were 5.6,
3.4, and 7.6, respectively.

Thus, these empirical results suggest that the quality of embedding w.r.t. the achievable F1 score
improves with increased dimensionality, however, after a certain saturation or peak point increasing
dimensionality further either does not affect or worsen the classification performance and arguably
becomes impractical when considering the computational resources.

Tables 1-34 report the results for three small datasets5 when applying all the considered classifiers.
Due to the space limitation, a fixed dimensionality of HD vectors is reported only: 512 for small
datasets in Tables 1-3 and 2048 for the 20NewsGroups dataset in Table ??. These dimensionalities
were chosen based on the results in Figures 1a-1d as the ones allowing to achieve a good approxi-
mation of F1 score while providing substantial speed-up/reduction. We also performed experiments
when using the BPE instead of the SemHash before extracting n-gram statistics. Throughout the

4The notations Tr., Ts., Mem. in the tables stand for the train speed-up, test speed-up, and the memory
reduction for the given classifier, respectively. SH stands for SemHash.

5Due to the page limit, results for the 20NewsGroups dataset are presented in the Appendix (see Table ??).

4

Under review as a conference paper at ICLR 2020

Table 2: Performance of all classifiers for the Chatbot dataset.

F1 score Resources: SH vs. HD Resources: SH vs. BPE
Classifier SH BPE HD Tr. Ts. Mem. Tr. Ts. Mem.
MLP 0.96 0.94 0.96 3.42 2.62 4.58 1.86 1.52 1.86
Passive Aggr. 0.95 0.91 0.94 4.40 2.38 4.72 2.29 2.22 1.92
SGD Classifier 0.93 0.93 0.92 3.16 2.06 4.72 1.88 1.84 1.92
Ridge Classifier 0.94 0.94 0.92 2.88 2.22 4.72 1.67 1.38 1.92
KNN Classifier 0.75 0.71 0.83 1.66 3.59 6.51 1.43 1.79 1.92
Nearest Centroid 0.89 0.94 0.84 1.41 2.13 4.73 1.17 1.61 1.92
Linear SVC 0.94 0.93 0.94 0.52 1.57 4.72 1.28 1.66 1.92
Random Forest 0.95 0.95 0.91 0.95 1.10 4.61 1.16 0.98 1.91
Bernoulli NB 0.93 0.93 0.82 1.92 2.60 4.73 1.53 1.72 1.92

Table 3: Performance of all classifiers for the WebApplication dataset.

F1 score Resources: SH vs. HD Resources: SH vs. BPE
Classifier SH BPE HD Tr. Ts. Mem. Tr. Ts. Mem.
MLP 0.77 0.77 0.79 3.10 2.00 4.43 1.74 1.44 1.73
Passive Aggr. 0.82 0.80 0.80 3.73 1.45 4.33 1.86 1.32 1.75
SGD Classifier 0.75 0.74 0.73 3.01 1.87 4.33 1.62 1.32 1.75
Ridge Classifier 0.79 0.80 0.80 1.66 2.40 4.34 0.71 1.09 1.75
KNN Classifier 0.72 0.75 0.76 1.16 2.76 5.96 1.14 1.51 1.76
Nearest Centroid 0.74 0.73 0.77 1.42 1.79 4.34 1.13 1.21 1.75
Linear SVC 0.82 0.80 0.80 1.04 1.48 4.29 0.47 1.18 1.75
Random Forest 0.87 0.85 0.72 0.95 1.26 4.11 1.05 1.12 1.73
Bernoulli NB 0.74 0.75 0.64 1.51 2.08 4.38 1.19 1.49 1.75

tables, the BPE demonstrated F1 scores comparable to that of the SemHash while showing the
train/test speed-ups and memory reduction at about 2. This is because the usage of the BPE resulted
in smaller sizes of the n-gram statistics, which were 2176, 1467, and 1508 for the AskUbuntu,
Chatbot, and WebApplication datasets, respectively.

In the case of HD vectors, the picture is less coherent. For example, there is a group of classifiers
(e.g., MLP, SGD, KNN) where F1 scores are well approximated (or even improved) while achieving
noticeable computational reductions. In the case of Linear SVC, F1 scores are well-preserved and
there is 4 − 6 memory reduction but test/train speed-ups are marginal (even slower for training the
Chatbot). This is because Linear SVC implementation benefits from sparse representations (con-
ventional n-gram statistics) while HD vectors in this study are dense. Last, for Bernoulli NB and
Random Forest F1 scores were not approximated well (cf. 0.93 vs. 0.82 for Bernoulli NB in the
case of the Chatbot). This is likely because both classifiers are relying on local information con-
tained in individual features, which is not the case in HD vectors where information is represented
distributively across the whole vector. The slow train time of Random Forest is likely because in the
absence of well-separable features it tries to construct large trees.

Last, due to the difference in the implementation (the official implementation of FastText only uses a
linear classifier), we were not able to have a proper comparison of computational resources with the
FastText.6 However, we obtained the following F1 scores with auto hyperparameter search: 0.91,
0.97, 0.76 for the AskUbuntu, Chatbot, and WebApplication datasets, respectively. These results
indicate that for the considered datasets there is no drastic classification performance improvement
(even worse for the WebApplication) when using the learned representations of n-grams.

6We could have implemented the algorithm ourselves but it can be claimed unfair to compare the required
memory and time, if we do not use the best practices, which are unknown to us.

5

Under review as a conference paper at ICLR 2020

REFERENCES

AI HLEG. High-Level Expert Group on Artificial Intelligence. Ethics Guidelines for Trustworthy
AI. 2019.

D. Braun, A. Hernandez-Mendez, F. Matthes, and M. Langen. Evaluating Natural Language Un-
derstanding Services for Conversational Question Answering Systems. In Annual Meeting of the
Special Interest Group on Discourse and Dialogue (SIGDIAL), pp. 174–185, 2017.

E.P. Frady, D. Kleyko, and F.T. Sommer. A Theory of Sequence Indexing and Working Memory in
Recurrent Neural Networks. Neural Computation, 30:1449–1513, 2018.

P. Huang, X.He, J. Gao, L. Deng, A. Acero, and L. Heck. Learning Deep Structured Semantic Mod-
els for Web Search using Clickthrough Data. In ACM international conference on Information
and Knowledge Management (CIKM), pp. 2333–2338, 2013.

A. Joshi, J.T. Halseth, and P. Kanerva. Language Geometry Using Random Indexing. In Quantum
Interaction (QI), pp. 265–274, 2016.

P. Kanerva. Hyperdimensional Computing: An Introduction to Computing in Distributed Represen-
tation with High-Dimensional Random Vectors. Cognitive Computation, 1(2):139–159, 2009.

Denis Kleyko, Evgeny Osipov, Alexander Senior, Asad I Khan, and Yaşar Ahmet Şekerciogğlu.
Holographic graph neuron: A bioinspired architecture for pattern processing. IEEE transactions
on neural networks and learning systems, 28(6):1250–1262, 2016.

K. Shridhar, A. Dash, A. Sahu, G. Grund Pihlgren, P. Alonso, V. Pondenkandath, G. Kovacs, F. Simi-
stira, and M. Liwicki. Subword Semantic Hashing for Intent Classification on Small Datasets. In
International Joint Conference on Neural Networks (IJCNN), pp. 1–6, 2019.

E. Strubell, A. Ganesh, and A. McCallum. Energy and Policy Considerations for Deep Learning in
NLP. arXiv:1906.02243, pp. 1–6, 2019.

6

	Introduction
	Methods
	Conventional n-gram statistics
	SubWord Semantic Hashing
	Embedding n-gram statistics into an HD vector

	Empirical evaluation
	Results

