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ABSTRACT

In this paper, we propose a Neural Machine Translation with General Purpose
Sequence Representations (NMTwGSR) system for low-resource machine trans-
lation. The proposed system does not have explicit encoder as is the case for gen-
eral encoder-decoder based NMT systems, instead, it exploits readily avail- able
pre-trained sequence representations. The decoder as well takes the input from
the masked BERT model and train further to learn encoder-decoder attentions be-
tween source and target language. The proposed system with the general-purpose
sequence representations is more practical in low resource settings. Especially, if
there are no auxiliary high-resource language pairs or monolingual data available
to pre-train the NMT system. We evaluate the proposed NMT system on four
low-resource language pairs (Ro-En, Fi-En, Tr-En, Lv-En) and empirical results
show that our approach is efficient in handling the low resource translation task.
For instance, on the Ro-En parallel corpus, our system attains 5.68 BLEU points
improvement compared to the competitive NMT system which does not exploit
these sequence representations in low a resource environment (one percent of the
full corpus).

1 INTRODUCTION

Neural Machine Translation (NMT) has achieved near human-performance on several language pairs
with the help of abundant parallel training data (Wu et al.| |2016;|Hassan et al., 2018). However, it is
difficult to gather such large-scale parallel data for all the language pairs.

More recently, several approaches have been proposed to handle low resource translation. These
approaches mainly fall into two categories: (1) utilizing monolingual data, and (2) using the knowl-
edge obtained from related high resource language pairs. Many research efforts have been spent on
incorporating monolingual data into machine translation, for example, Giilcehre et al.|(2015); Zhang
& Zong| (2016) uses multi-task learning; [Sennrich et al.| (2016) uses back-translation, and |Artetxe
et al. (2017); Lample et al.|(2018));/Chen et al.| (2018) proposes unsupervised machine translation.

In the second approach, several works such as |Firat et al.|(2016)); [Lee et al.| (2017); |Ha et al.| (2016)
exploit the knowledge of auxiliary translations or even auxiliary tasks. In 2Gu et al.|(2018a)) leverage
multilingualism into NMT. For instance, |Gu et al.| (2018a) simultaneously train multiple translation
tasks using universal lexical representation which facilitate the sharing of embedding information
across different languages. Meta-learning based NMT model (Gu et al., 2018b; |Li et al.| |2019) has
shown improvements for low resource translation by pretraining on several auxiliary high resource
translation tasks or by leveraging domain data from multiple sources. However, obtaining such
universal lexical representations and related auxiliary tasks is not always easy. Moreover, most of
these models assume target language is same for all language pairs (for examples, English as the
target language in all pairs) making them difficult to apply for reverse translation tasks (English to
other languages).

Recently, general purpose sequence representations (Peters et al.,[2017; |/Alec Radford & Sutskever,
2018 Devlin et al., [2018) have led to strong improvements in several Natural Language Processing
(NLP) tasks. In this context, a Transformer encoder/decoder is trained on a large unsupervised
text corpus, and then fine-tuned on NLP tasks such as question-answering (Rajpurkar et al.,|2016),
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Figure 1: Overview of the proposed system based.

and named entity recognition (Tjong Kim Sang & De Meulder, 2003)). There have been many
attempts to utilize such representations into NMT systems as well. For example, Lample & Conneau
(2019); |Song et al.|(2019) show that initialization with pretrained MaskedLM or Masked Sequence-
to-Sequence is beneficial for machine translation, and [Yang et al.| (2019); [Chen et al.| (2019) distill
sequence representation knowledge from BERT into NMT model. Also, [Clinchant et al.| (2019);
Imamura & Sumita) (2019) proposed incorporating BERT model into the NMT task. However, their
incorporation is limited to the encoder, while our proposed method utilizes representations in the
target side also.

Inspired by these latest approaches based on pretrained sequence representations (Devlin et al.
2018) in NLP, in this work, we propose a Neural Machine Translation with General Purpose Se-
quence Representations (NMTwGSR) approach for low resource translation. The proposed system
falls into the first category of utilizing monolingual data. However, we do not explicitly pretrain
the NMT model on monolingual data compared to the previous works such as|Ramachandran et al.
(2017), instead, we use pretrained sequence representations. There are several advantages to the
proposed NMT system:

e It doesn’t assume the availability of several high resource language pairs for pretraining as
required by the previous approaches such as transfer or meta learning.

e It achieves significant BLEU point improvement on several low-resource translation tasks
compared to the competitive NMT system (Vaswani et al., 2017).

e The previously proposed techniques such as back-translation, multilingual-NMT,
transfer/meta-learning training strategies are straight forward to integrated into to the pro-
posed system whenever there is an availability of related high resource language pair(s) for
the corresponding low-resource language pair training.

e We extensively evaluate the proposed approach on four low-resource translation tasks. The
proposed model consistently outperforms the strong NMT baseline which does not exploits
sequence representations and the gap widens as the number of training examples decreases.

o The size of the above four languages are very small compared to the well-known language
pairs such as En-De and En-Fr. The performance improvements on these language pairs
achieved by our model reveals that it can be easily adopted to a new language pair coming
from low resource languages such as Asian and African, whenever the sequence represen-
tations are available for these in language models like BERT.
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2 NMT SYSTEM FOR LOW RESOURCE TRANSLATION

In Section we briefly describe the BERT model used to obtain the pretrained token representa-
tions for source and target sequences. The brief details about the Transformer decoder for generating
the target sequence are provided in Section [2.2] Finally, in Section [2.3] we introduce our proposed
system.

2.1 PRETRAINED LANGUAGE REPRESENTATIONS

The architecture of BERT is based on multi-layer Transformer encoder. Figure [I] contains one
layer of BERT model. The language representations from the BERT model drastically improved
the performance of several classification tasks from GLUE benchmark (Wang et al., [2018)). Unlike
traditional language models, BERT computes token representations using left-to-right and right-to-
left contextual information. To facilitate the training of this bi-directional language model it uses
masked language model and next sentence prediction as training objectives. Due to the bidirectional
nature and multi-language model training, the BERT model can efficiently represent the source and
target sequence of the translation task.

2.2 TRANSFORMER DECODER

The second component in the proposed system is based on the Transformer decoder block. Each
block in the Transformer decoder contains three sub-layers. The first two sub-layers are a position-
wise fully connected feed-forward network, a multi-head self-attention mechanism, and used to
compute the representations for the input sequence. The third sub-layer is used to compute the at-
tention (context) vector of the source-target sequence based on soft-attention approaches (Bahdanau
et al| [2015). One layer of the Transformer decoder is shown in Figure[I]

2.3 PROPOSED SYSTEM

The overview of the proposed system is shown in Figure [} The tokens in the source and target
languages are represented by word-piece ids. We use word-piece vocabulary available in BERT
Multilingual Case model (section [2.T) to tokenize both the sequences.

BERT for source language The source language sequence (x) is fed into BERT model to get the
token representations (X)),

X = BERT(x) € R™*<, (1)
At this stage each token in the source language contains contextual information from all other tokens
falling on left-side as well as right-side to it.

BERT for target language By nature of the design, each token representation in the BERT model
contains contextual information from the right-side tokens. However, predicting the target sequence
token should only depend on the previously predicted tokens. To address this issue we explicitly

mask the right side tokens. The target language sequence representation (Y) is obtained as follows:

Y = BERT\(asked (¥, mask) € R4, )

Here, mask prevents model to attend right-side tokens.

Decoder The decoder is based on the 6 identical layers of Transformer decoder (section @J) It
takes both the source language representations (X) and the target language representations (Y) as
input and computes Y using the three sub-layers presented in each layer of the Transformer decoder.

Y = Transformerqocoder (X , }7) 3)
Finally, we apply the learned transformation and softmax function to convert the output from the
decoder to predict the target token probabilities.

Training The parameters from the pre-trained BERT model are kept constant. We only learn pa-
rameters from the decoder and the output layer.
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Figure 2: The models are trained on 160k, 320k, 640k, and 1280k sampled subsets.

#Tok Ro-En En-Ro Fi-En En-Fi Tr-En En-Tr Lv-En En-Lv
Base Ours | Base Ours | Base Ours | Base Ours | Base Ours | Base Ours | Base Ours | Base Ours
Full | 31.76 32.68 - - 2020 22.39 - - 13.74 15.19 - - 15.15 17.39 - -
1280K | 18.83 21.05 1696 19.67 | 7.70 9.26 7.20 8.02 | 940 1024 987 10.12 | 6.17 7.19 532 6.39
640K | 14.14 17.68 12.70 1638 | 553 7.62 3.67 458 | 508 776 458 643 | 380 522 3.01 430
320K | 825 1423 6.63 11.01 | 324 547 198 292 | 259 544 174 391 229 352 171 276
160K | 480 1048 420 797 1.04 312 053 191 144 349 1.02 215 | 085 215 096 1.72

Table 1: Test BLEU results of models trained on 160k, 320k, 640k, and 1280k sampled subsets
of four langauge paris both for forward and backward. The models trained on Full dataset is only
presented with forward direction.

3 EXPERIMENTAL SETTINGS

In this section we discuss the datasets used for conducting the experiments and implementation
details of the proposed model.

3.1 DATASETS

We evaluate our model on four different language pairs: Romanian(Ro) / Finnish(Fi) / Turkish(Tr)
/ Latvian(Lv) - English(En). The Ro-En dataset is taken from WMT’16 and the remaining 3 lan-
guages; Fi-En, Tr-En and Lv-En are taken from WMT’17. We use the standard train, validation and
test splits provided in the WMT’ 16 and WMT’17 tasks.

Low resource environment is simulated by randomly sampling the training set from the corpus based
on 160k, 320k, 640k, and 1280k English tokens. For all the language pairs, we sample training set
for five times for each subset and report the average BLEU score and its standard deviation. The total
number of tokens in the full corpus of Lv/Fi/Ro/Tr-En are 67.24M, 64.5M, 16.66M and 5.58M re-
spectively. For example, subset 160k and 320K in Ro-En language pair only contain approximately
one and five percent of the full corpus respectively.

3.2 IMPLEMENTATION DETAILS

The token representation for source and target sequence are computed using BERT-Base,
Multilingual Cased model which is release by [Devlin et al| (2018). The proposed
model is implemented based on Tensorflow(Abadi et all 2015) and OpenNMT(Klein et al, 2017)
frameworks. The weights of the BERT are fixed during training our model. The Transformer
model(Vaswani et al 2018) is used as a baseline with Tranformer base settings. The decoder in
our models also uses the same set of hyperparameters similar to the Transformer model (n;qyer =
6, Nhead = 8, warmupsteps = 16k).

4 RESULTS

To see the effect of general purpose sequence representations on low resource translation tasks, we
compare our proposed system which utilizes sequence represenations against Trannsformer model

Vaswani et al.|(2017)) without these representations.
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Figure 3: The BLEU scores for Lv-En and En-Lv pairs at different stages of training. In each plot,
the upper curves are obtained using 1280k subset and lower curves are obtained using 160k subset.

4.1 TRAINING IN LOW RESOURCE ENVIRONMENT

We train the proposed, NMTwGSR and Transformer methods on 160k, 320k, 640k, and 1280k
sampled training subsets of Ro/Fi/Tr/Lv-En translation tasks. To see the effectiveness of our model
in generating low resource language as the target language, we also conduct experiments on the
reverse translation task (En-Ro/Fi/Tr/Lv). The results of all the language pairs obtained on the test
sets are shown in Table [I] We aslo plot the bar graph in [2] for Ro-En and En-Ro language pairs to
show the improvements visually, and other three languages also have similar visual improvements.

From Table [T} we can see that our model clearly outperforms the Transformer model in low re-
source environments for both forward and reverse translation tasks. This empirical results from
various languages show that our model tackles the problem of low resource translation in an simple
way compared to collecting huge parallel corpora or monoligula corpora and training from scratch.
Moreover the proposed model is eaiser train to due to the less number of trainable parameters com-
pared to the baseline.

4.1.1 LEARNING CURVES

In Figure [3] we show the learning curves of both the models obtained on 160K and 1280K subsets
of Lv-En and En-Lv pairs. The curves are plotted based on the average of five runs for each subset.
The advantage of general purpose sequence representations for low resource translation is clearly
observed in Figure 3] Even though in the initial phase of training both the models achieve the same
level of BLEU points, the NMTwGSR surpasses the Transformer model as the training progress.
Similar trends are observed across different language pairs and training subsets.

4.2 TRAINING ON FuLL CORPUS

Along with low resource environment, we also test the general applicability of our model by training
it on the full corpus. The number of the parallel sentence in each language pair ranges from 4.46M
to 0.21M. The results for all the language pairs are also provided in Table [I] The BLEU scores of
the Transformer model are taken from |Gu et al.|(2018b). It can be noted that the proposed method
achieved significant BLEU score improvement in all the translation tasks.

5 CONCLUSION

In this work, we propose an NMT system based on the general purpose pretranied sequence repre-
sentations for low resource translation. The proposed system is based on the recently released BERT
model and adapted it to work for the decoding step. With the help of multilingual representations
available from the BERT model, it can be applied to many new language pairs without depending
auxiliary high resource language pairs. The propopsed system can be easily integreted with new
better language models whenever they are available. Our experimental results on four low resource
language pairs show the effectiveness of the proposed approach for both the forward and reverse
translation tasks.
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