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ABSTRACT

Active learning techniques can improve data efficiency of labeling but can be
computationally expensive to apply in deep learning. Unlike in other areas of
machine learning, the feature representations that these techniques depend on are
learned in deep learning rather than given, requiring substantial training times. In
this work, we show that we can greatly improve the computational efficiency of
deep active learning by using a small proxy model to select which data points to
label. By removing hidden layers from the target model, using smaller architectures,
or training for fewer epochs, we create proxies that are an order of magnitude faster
to train. Although these small proxy models have higher error rates, we find that
they empirically provide useful signal for data selection. We evaluate this “selection
via proxy” (SVP) approach with two active learning methods across five datasets:
CIFAR10, CIFAR100, ImageNet, Amazon Review Polarity, and Amazon Review
Full. Applying SVP to active learning can give an order of magnitude improvement
in data selection runtime (i.e., the time it takes to repeatedly train and select points)
without significantly increasing the final error.

1 INTRODUCTION

Active learning improves the data efficiency of machine learning by identifying the most informative
training examples. To quantify informativeness, these methods depend on semantically meaningful
features or a trained model to calculate uncertainty. Concretely, active learning selects points to label
from a large pool of unlabeled data by repeatedly training a model on a small pool of labeled data and
selecting additional examples to label based on the model’s uncertainty (e.g., the entropy of predicted
class probabilities) or other heuristics (Settles, 2011; 2012; Lewis & Gale, 1994).

Unfortunately, classical active learning methods are often prohibitively expensive to apply in deep
learning (Shen et al., 2017; Sener & Savarese, 2018; Kirsch et al., 2019). Unlike other machine
learning methods, deep learning models learn complex internal semantic representations (hidden
layers) from raw inputs (e.g., pixels or characters) that enable them to achieve state-of-the-art
performance but result in substantial training times. Many active learning techniques require this
feature representation before they can accurately identify informative points. As a result, new deep
active learning methods request labels in large batches to avoid retraining the model too many
times (Shen et al., 2017; Sener & Savarese, 2018; Kirsch et al., 2019). However, batch active learning
still requires training a full deep model for every batch, which is costly for large models.

In this paper, we propose selection via proxy (SVP) as a novel way to make existing active learning
methods more computationally efficient for deep learning. SVP uses the feature representation from
a separate, less computationally intensive proxy model in place of the representation from the much
larger and more accurate target model we aim to train. SVP builds on the idea of heterogeneous
uncertainty sampling from Lewis & Catlett (1994), which showed that an inexpensive classifier
(e.g., naïve Bayes) can select points to label for a much more computationally expensive classifier
(e.g., decision tree). In our work, we show that small deep learning models can similarly serve as
an inexpensive proxy for data selection in deep learning, significantly accelerating active learning
techniques. To create these cheap proxy models, we can scale down deep learning models by
removing layers, using smaller model architectures, or training them for fewer epochs. While these
scaled-down models achieve significantly lower accuracy than larger models, we surprisingly find that
they still provide useful representations to rank and select points (i.e., high Spearman’s and Pearson’s
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correlations with much larger models on metrics such as uncertainty (Settles, 2012) and submodular
algorithms such as greedy k-centers (Wolf, 2011)). Because these proxy models are quick to train,
we can identify which points to select nearly as well as the larger target model but significantly faster.

We empirically evaluated SVP for active learning on five datasets: CIFAR10, CIFAR100 (Krizhevsky
& Hinton, 2009), ImageNet (Russakovsky et al., 2015), Amazon Review Polarity, and Amazon
Review Full (Zhang et al., 2015). We considered both least confidence uncertainty sampling (Settles,
2012; Shen et al., 2017; Gal et al., 2017) and the core-set approach from Sener & Savarese (2018)
with a variety of proxies. Across all datasets, we found that SVP matches the accuracy of the
traditional approach of using the same large model for both selecting points and the final prediction
task. Depending on the proxy, SVP yielded up to a 7⇥ speed-up on CIFAR10 and CIFAR100, 41.9⇥
speed-up on Amazon Review Polarity and Full, and 2.9⇥ speed-up on ImageNet in data selection
runtime (i.e., the time it takes to repeatedly train and select points). For example, the Amazon Review
results were achieved using fastText as a proxy for VDCNN29, which takes less than 10 minutes to
train instead of 16 hours. These results demonstrate that SVP is a promising, yet simple approach to
make active learning methods computationally feasible.

2 METHODS

2.1 ACTIVE LEARNING

Pool-based active learning starts with a large pool of unlabeled data U = {xi}i2[n] where [n] =
{1, . . . , n}. Each example is from the space X with an unknown label from the label space Y and is
sampled i.i.d. over the space Z = X ⇥ Y as {xi, yi} ⇠ pZ . Initially, methods label a small pool of
points s0 = {s0j 2 [n]}j2[m] chosen uniformly at random. Given U , a loss function `, and the labels
{ys0j}j2[m] for the initial random subset, the goal of active learning is to select up to a budget of b
points from U to label that will minimize the generalization error of a learning algorithm A.

Algorithm 1 GREEDY K-CENTERS
(WOLF, 2011; SENER & SAVARESE, 2018)
Input: data xi, existing pool s0, trained model

AT
0 , and a budget b

1: Initialize s = s0

2: repeat
3: u = argmaxi2[n]\s minj2s �

�
xi,xj ;AT

0

�

4: s = s [ {u}
5: until |s| = b+ |s0|
6: return s \ s0

Baseline. In this paper, we applied SVP to least
confidence uncertainty sampling (Settles, 2012;
Shen et al., 2017; Gal et al., 2017) and the re-
cent core-set approach to active learning from
Sener & Savarese (2018). Like recent work for
deep active learning (Shen et al., 2017; Sener
& Savarese, 2018; Kirsch et al., 2019), we con-
sidered a batch setting with K rounds where
we selected b

K points in every round. Follow-
ing Gal et al. (2017); Sener & Savarese (2018);
Kirsch et al. (2019), we reinitialized the tar-
get model and retrained on all of the labeled
data collected over previous rounds (denoted
as AT

s0[...[sk or AT
k ) to avoid any correlation

between selections (Frankle & Carbin, 2018;
Kirsch et al., 2019). Then using AT

k , we either calculated the model’s confidence as:

fconfidence(x;A
T
k ) = 1�max

ŷ
P (ŷ|x;AT

k )

and selected the examples with the lowest confidence or extracted a feature representation from the
model’s final hidden layer and computed the distance between examples (i.e., �(xi,xj ;AT

k )) to
select points according to the greedy k-centers method from Wolf (2011); Sener & Savarese (2018)
(Algorithm 1). The same model was trained on the final b labeled points to yield the final model, AT

K ,
which was then tested on a held-out set to evaluate error and quantify the quality of the selected data.

2.2 APPLYING SELECTION VIA PROXY

SVP can be applied by replacing the models used to compute data selection metrics such as uncertainty
with proxy models. Specifically, we replaced the model trained at each batch (AT

k ) with a proxy
(AP

k ), but then trained the same final model AT
K once the budget b was reached, as shown in Figure 1.

We explored two main methods to create our proxy models:
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Figure 1: SVP applied to active learning. We followed the same iterative procedure of training
and selecting points to label as traditional approaches but replaced the target model with a cheaper-
to-compute proxy model. Empirically, we found the proxy and target model have high rank-order
correlation, leading to similar selections and downstream results.

Scaling down. For deep models with many layers, reducing the dimension or the number of hidden
layers reduces training times considerably with only a small drop in accuracy. For example, the
accuracy of deep ResNet models only slightly diminishes as layers are dropped from the network (He
et al., 2016b;a). A ResNet20 model achieves a top-1 error of 7.6% on CIFAR10 in 26 minutes, while
a larger ResNet164 model only reduces error by 2.5%, but takes 4 hours (Figure 2a in the Appendix).
Looking across architectures can also substantially reduce computational complexity with only a
small increase in error. We exploit these diminishing returns to scale down to a proxy that can be
trained quickly but still provides a good approximation of the target’s decision boundary.

Training for a fewer epochs. Similarly, a significant amount of training is spent on a relatively small
reduction in error. While training ResNet20, almost half of the training time (i.e., 12 minutes out of
26 minutes) is spent on a 1.4% improvement in test error, as shown in Figure 2a in the Appendix.
Based on this observation, we also explored training proxy models for a smaller number of epochs.

3 RESULTS

3.1 EXPERIMENTAL SETUP

Datasets. Our experiments included three image classification datasets: CIFAR10, CI-
FAR100 (Krizhevsky & Hinton, 2009), and ImageNet (Russakovsky et al., 2015); and two text
classification datasets: Amazon Review Polarity and Full (Zhang et al., 2015). CIFAR10 is a coarse-
grained classification task over 10 classes, and CIFAR100 is a fine-grained task with 100 classes.
Both datasets contain 50,000 images for training and 10,000 images for testing. ImageNet has 1.28
million training images and 50,000 validation images that belong to 1 of 1,000 classes. Amazon
Review Polarity (2-classes) has 3.6 million reviews with an additional 400,000 reviews for testing.
Amazon Review Full (5-classes) has 3 million reviews with an additional 650,000 reviews for testing.

Models. For CIFAR10 and CIFAR100, we used ResNet164 with pre-activation from He et al. (2016b)
as our large target model. The smaller, proxy models are also ResNet architectures with pre-activation,
but they use pairs of 3 ⇥ 3 convolutional layers as their residual unit rather than bottlenecks. For
ImageNet, we used the original ResNet architecture from He et al. (2016a) implemented in PyTorch
with ResNet50 as the target and ResNet18 as the proxy. For Amazon Review Polarity and Full, we
used VDCNN (Conneau et al., 2017) and fastText (Joulin et al., 2016) with VDCNN29 as the target.

3.2 ACTIVE LEARNING

We explored the impact of SVP on two active learning techniques: least confidence uncertainty
sampling and the coreset approach from Sener & Savarese (2018). Starting with an initial random
subset of 2% of the data, we selected 8% of the remaining unlabeled data for the first round and
10% for subsequent rounds until the labeled data reached the budget b and retrained the models from
scratch between rounds as described in Section 2.1. Across datasets, SVP sped up data selection
without significantly impacting the final predictive performance of the target.
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Table 1: Average (± 1 std.) data selection speed-ups from 3 runs of active learning using least
confidence uncertainty sampling with varying proxies and labeling budgets on four datasets. Bold
speed-ups indicate settings that either achieve lower error or are within 1 std. of the mean top-1 error
for the baseline approach of using the same model for selection and the final predictions.

Data Selection Speed-up
Budget (b/n) 10.0% 20.0% 30.0% 40.0% 50.0%

Dataset Selection Model
CIFAR10 ResNet164 (Baseline) 1.0⇥ 1.0⇥ 1.0⇥ 1.0⇥ 1.0⇥

ResNet110 1.8⇥ 1.9⇥ 1.9⇥ 1.8⇥ 1.8⇥
ResNet56 2.6⇥ 2.9⇥ 3.0⇥ 3.1⇥ 3.1⇥
ResNet20 3.8⇥ 5.8⇥ 6.7⇥ 7.0⇥ 7.2⇥

CIFAR100 ResNet164 (Baseline) 1.0⇥ 1.0⇥ 1.0⇥ 1.0⇥ 1.0⇥
ResNet110 1.5⇥ 1.6⇥ 1.6⇥ 1.6⇥ 1.6⇥
ResNet56 2.4⇥ 2.7⇥ 3.0⇥ 2.9⇥ 3.1⇥
ResNet20 4.0⇥ 5.8⇥ 6.6⇥ 7.0⇥ 7.2⇥

ImageNet ResNet50 (Baseline) 1.0⇥ 1.0⇥ 1.0⇥ 1.0⇥ 1.0⇥
ResNet18 1.2⇥ 1.3⇥ 1.4⇥ 1.5⇥ 1.6⇥

Amazon VDCNN29 (Baseline) 1.0⇥ 1.0⇥ 1.0⇥ 1.0⇥ 1.0⇥
Review VDCNN9 1.9⇥ 1.8⇥ 1.8⇥ 1.8⇥ 1.8⇥
Polarity fastText 10.6⇥ 20.6⇥ 32.2⇥ 41.9⇥ 51.3⇥

CIFAR10 and CIFAR100. For least confidence uncertainty sampling and greedy k-centers, SVP
sped-up data selection by up to 7⇥ and 3.8⇥ respectively without impacting data efficiency (see
Tables 1 and 2) despite the proxy achieving substantially higher top-1 error than the target ResNet164
model (see Figure 4 in the Appendix). The speed-ups for least confidence were a direct reflection
of the difference in training time between the proxy in the target models. As shown in Figures 2
and 3 in the Appendix, ResNet20 was about 8⇥ faster to train than ResNet164, taking 30 minutes
to train rather than 4 hours. Larger budgets required more rounds of selection and, in turn, more
training, which led to larger speed-ups as training became a more significant fraction of the total time.
Training for fewer epochs provided a significant error reduction compared to random sampling but
was not as good as training for the full schedule (see Table 3 in the Appendix). For greedy k-centers,
the speed-ups increased more slowly because executing the selection algorithm added more overhead.

ImageNet. For least confidence, SVP sped-up data selection by up to 1.6⇥ (Table 1) despite
ResNet18’s higher error compared to ResNet50 (Figure 4g in the Appendix). Training for fewer
epochs increased the speed-up to 2.9⇥ without increasing the error rate of ResNet50 (Table 3).
Greedy k-centers was too slow on ImageNet due to the quadratic complexity of Algorithm 1.

Amazon Review Polarity and Amazon Review Full. On Amazon Review Polarity, SVP with a
fastText proxy for VDCNN29 led to up to a relative error reduction of 14% over random sampling for
large budgets (Table 2), while being up to 41.9⇥ faster at data selection than the baseline approach
(Table 1). Despite fastText’s architectural simplicity compared to VDCNN29 and higher error
(Figure 4e), the calculated confidences signaled which examples would be the most informative. For
all budgets, VDCNN9 was within 0.1% top-1 error of VDCNN29, giving a consistent 1.8⇥ speed-up.
On Amazon Review Full, neither the baseline least confidence uncertainty sampling approach nor
the application of SVP outperformed random sampling (see Table 2 in the Appendix), so the data
selection speed-ups were uninteresting even though they were similar to Amazon Review Polarity.
For both datasets, greedy k-centers was too slow as mentioned above in the ImageNet experiments.

4 CONCLUSION

In this work, we introduced selection via proxy (SVP) to improve the computational efficiency
of active learning in deep learning by substituting a cheaper proxy model’s representation for an
expensive model’s during data selection. Applied to least confidence uncertainty sampling and Sener
& Savarese (2018)’s core-set approach, SVP achieved up to a 41.9⇥ and 3.8⇥ improvement in
runtime respectively with no significant increase in error. Our results demonstrate that SVP is a
promising approach to reduce the computational requirements of active learning for deep learning.
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