Under review as a workshop paper at ICLR 2020

ON ITERATIVE NEURAL NETWORK PRUNING, REINI-
TIALIZATION, AND THE SIMILARITY OF MASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Iterative pruning methods, such as lottery ticket pruning, provide evidence for the
ability to use models with state-of-the-art properties on low-compute devices such
as mobile phones. We examine how recently documented, fundamental phenom-
ena in pruned deep learning models is affected by changes in pruning procedure.
We address questions of the uniqueness high-sparsity sub-networks and their de-
pendence on pruning method by analyzing differences in connectivity structure
and learning dynamics. In convolutional layers, we document the emergence of
structure induced by magnitude-based unstructured pruning in conjunction with
weight rewinding that resembles the effects of structured pruning.

1 INTRODUCTION

Deep neural architectures have seen a dramatic increase in size (Amodei & Hernandez, [2018). Al-
though not entirely understood, it is known that over-parametrized networks exhibit high generaliza-
tion performance, with recent empirical evidence showing that the generalization gap tends to close
with increased number of parameters (Zhang et al., [2017; Belkin et al., 2018 |Hastie et al., 2019;
Allen-Zhu et al., 2018 Du et al., |2018; [Du & Leel 2018). While advantageous under this point
of view, the proliferation of parameters in neural architectures may induce adverse consequences.
The computational cost to train state-of-the-art models has raised the barrier to entry for many re-
searchers hoping to contribute (Le, 2013; |Sculley et al., 2018; |Strubell et al., 2019). Additionally,
the cost of storage and compute has restricted the use of these large-scale models on smaller sys-
tems such as wireless devices (Gokhale et al.,2014). This inaccessibility is of particular concern for
machine learning applications in the developing world, where many people use mobile phones their
only means of internet access (De-Arteaga et al., |2018; |Bahia & Suardi, 2019). To enable private,
secure computation on devices with lower computational resources, model compression (Breiman
et al.| [1984; [LeCun et al.| [1990b; |Gong et al.| 2014} Hinton et al., |2015) is commonly used.

Recently, there has been increasing interest model compression by pruning, led by the existence
of sub-networks with favorable training properties within over-parametrized models, “lottery tick-
ets” (Frankle & Carbin, [2018). To further understanding of the dynamics of pruning, this work
investigates the dependence of the properties of these sparse, lucky sub-networks on the choice of
pruning technique. We set out to answer the questions:

1. Do pruning methods other than magnitude-based unstructured pruning give rise to winning
tickets?

2. If so, do they identify the same lucky sub-network, or are there many equiperforming win-
ning tickets within the same over-parametrized network?

We develop methods to further analyze trainable sparse networks found through iterative pruning
techniques, and provide new insight towards a deeper understanding of their properties and of the
processes that generate them. Without addressing issues related to scalability and emergence of lot-
tery tickets in large-scale domains, we focus instead on the empirical characterization of weight evo-
lution and emergence of distinctive connectivity patterns in small architectures, such as LeNet (Le-
Cun et al.,[1990a)), on simple datasets, such as MNIST (LeCun et al.| {1994). This also helps develop
analysis techniques for sanity checks via visual inspection. We then apply the same techniques to
larger architectures and more complex tasks to explore whether findings hold in different regimes.

Under review as a workshop paper at ICLR 2020

This work provides empirical evidence showing that:

—_—

. multiple “lottery tickets” can exist within an over-parametrized network;
2. itis possible to find a lucky sub-network through a variety of choices of pruning techniques;

3. lottery ticket-style weight rewinding, coupled with unstructured pruning, gives rise to con-
nectivity patterns similar to the ones obtained with structured pruning along the input di-
mension, suggesting an input feature selection effect. This is not the case when finetuning;

4. random structured pruning outperforms random unstructured pruning, meaning that net-
works are more resistant to the removal of random units/channels than to the removal of
random individual connections;

5. different iterative pruning techniques learn vastly different functions of their input, and sim-
ilarly performing networks make different mistakes on held-out test sets, hinting towards
the utility of ensembling in this setting.

2 METHOD

All networks in this section are trained for 30 epochs using SGD with constant learning rate 0.01,
batch size of 32, without explicit regularization. The pruning fraction per iteration is held constant
at 20% of remaining connections/units per layer. Experiment and analysis code is availableﬂ

2.1 PRUNING METHODS

This works explores a variety of pruning techniques that may differ along the following axes:

Neuronal Importance Definition: In magnitude-based pruning, units/connections are removed
based on the magnitude of synaptic weights. Usually, low magnitude parameters are removed. As
an alternative, one can remove high magnitude weights (Zhou et al., |2019). Non-magnitude-based
pruning techniques can be based other rules for neuronal importance such as activations or gradients.

Local vs. global: Local pruning removes a fixed percentage of units/connections from each layer,
comparing each unit/connection to the other units/connections in the layer. Global pruning compares
all parameters across layers and selects prunes global fraction, which is beneficial when layers have
unequal parameter distribution. A middle-ground approach is to pool together only parameters
belonging to layers of the same kind, to avoid mixing, say, convolutional and fully-connected layers.

Unstructured vs. structured: Unstructured pruning removes individual connections, while struc-
tured pruning removes entire units or channels. Structured pruning along the input axis is con-
ceptually similar to input feature importance selection. Structured pruning along the output axis is
analogous to output suppression. In this work, we compare: magnitude-based {L;, random} un-
structured (US), {L1, L2, L, random} structured (S), and hybrid pruning. The hybrid techniques
consists of pruning convolutional layers with L, structured pruning and fully-connected layers with
L unstructured pruning. “fc-only” identifies experiments in which only the fully-connected layers
are pruned. Structured pruning is performed along the input axis. All techniques are local. We
implement these pruning techniques and train our models using PyTorch (Paszke et al., 2017).

2.2 FINETUNING VS. REINITIALIZING

A point of contention in the literature revolves around the necessity to rewind weights after each
pruning iteration, as opposed to simply finetuning the pruned model. We avoid performance-based
arguments in favor of studying how this choice affects the left-over connectivity structure. For
comparisons to alternative rewinding techniques, see Appendix [A] Unless otherwise specified, all
results refer to setup with full weight rewinding. When rewinding the weights according to [Frankle
& Carbin| (2018) and |Zhou et al.|(2019)) biases are pruned; in this work, we do not prune biases.

'in anonymized form, at/github.com/iclr-8dafb2ab/iterative-pruning-reinit

github.com/iclr-8dafb2ab/iterative-pruning-reinit

Under review as a workshop paper at ICLR 2020

3 RESULTS

In all figures, unless otherwise specified, the error bars and shaded envelopes correspond to one
standard deviation (half up, half down) from the mean, over 5 experiments with seeds 0-4.

3.1 PRUNING METHODS

We begin by exploring the performance of sub-networks generated by different iterative pruning
techniques starting from a base LeNet architecture, where lottery tickets are known to uncontrover-
sially exist and be easy to find. Each point in Fig. [I] represents the test accuracy after exactly 30
epochs of training (not the best test accuracy achieved across the 30 epochs). Multiple techniques
are able to identify trainable sub-networks up to high levels of sparsity. For a note on how the frac-
tion of pruned weights is computed, see Appendix [B] Different types of magnitude-based structured
pruning seem to perform only marginally better than pruning random channels, leading us to con-
clude that either the channels learn highly redundant transformations and are therefore equivalent
under pruning, or there exists a hierarchy of importance among channels but it is not correlated to
any of the L,, norms tested in these experiments.

We quantify the overlap in sub-networks found by two different pruning methods started with
pairwise-identical initializations by computing the Jaccard similarity coefficient (Intersection over
Union) between the masks (Jaccard, [1901). Although the different structured pruning techniques
find sub-networks that perform similarly (Fig[T), a deeper investigation into the connectivity struc-
ture of the found sub-networks shows that there exist multiple lucky sub-networks with similar
performance yet little to no overlap, as evident from the growth in Jaccard distance over pruning
iterations in Fig.[3].

0.99
 —— 098 e s -
= iR e —— e S
S n\\\ 097
N 095
NN
\ \
090 L structured L 0.90
amount=20%, axis=1 A Ly structured
§ . L, structured § oo amount=20%, axis=1
] amount=20%, axis=1 g Ly stmcture%
g o Ly unstructured g o0 amount=20%, axis=1
< = amount=20% < 060 L, unstructured
7 L 7% amount=20%
- » structured S 050
&= amount=20%, axis=1 &= Ly unstructured
o 0.40 amount=20%
fe-only L; unstructured
" amount=20% 0.30 L, structured
I hybrid amount=20%, axis=1
random structured 020 L, structured
—+ —20%, axis=
amount=20%, axis=1 amo.\lnt 20%, axis=1
random unstructured o101 —f= hybrid
amount=20% hybrid
oo ok ok ofo ok T on 0w om 020 030020050060 070 0.80 000 0.5 087098
Fraction of Pruned Weights Fraction of Pruned Weights

Figure 1: Test accuracy on MNIST test set for Figure 2: Test accuracy on the MNIST test set
SGD-trained LeNet models, pruned using six for SGD-trained LeNet models, pruned using
methods, and rewound to initial weight values four methods. The transparent curves corre-
after each pruning iteration. spond to finetuning; the dark ones to rewinding.

The study of the Jaccard distance between masks surfaces another interesting phenomenon: as
shown in Fig. 4} the connectivity patterns obtained from magnitude-based unstructured pruning
are relatively more similar to those that one would expect from structured pruning along the in-
put dimension, especially in the convolutional layers, than to random unstructured patterns. This
suggests that a form of input (or, at times, especially in larger models, output) feature selection is
automatically being learned. This observation is further confirmed via visual inspection of the prun-
ing masks; the first two columns of Fig. [5]show the weights and masks in the second convolutional
layer of LeNet, obtained by applying structured and unstructured L, pruning. Unstructured pruning
ends up automatically removing entire rows of filters corresponding to unimportant input channels.
Structured pruning, instead, in this case, does so because, in these experiments, it is explicitly in-
structed to prune along the input dimension. This suggests that the low-magnitude weights pruned
by L;-unstructured pruning may be those that process low-importance hidden representations and
whose outputs contribute the least to the network’s output, which in turn results in lower gradients
and smaller weight updates, causing these weights to remain small, and thus be subject to pruning.

Under review as a workshop paper at ICLR 2020

L structured, amount=20%, axis=1 random unstructured, amount=20%

L, structured, amount=20%, axis=1 random structured, amount=20%, axis=1
L, unstructured, amount=20% L_.. structured, amount=20%, axis=1
hybrid

Figure 3: Jaccard distance between the masks (i.e. connectivity structures) found by pruning LeNet
using Le-structured pruning, and those found by other pruning methods listed in the legend, con-
ditional on identical seed for meaningful comparison in light of neural network degeneracy. The
comparison is conducted for each layer individually. L;-structured pruning yields the most similar
masks to Lo-structured pruning, as expected.

Not only do the different pruning methods lead to different masks, but they also lead to sub-networks
that learn partially complementary solutions, opening up the opportunity for the ensembling of dif-
ferent sparse sub-networks. Table 2] records the average accuracy (over the 5 experiment seeds) of
sub-networks obtained at each pruning iteration through a set of pruning techniques, as well as the
average accuracy obtained after simply averaging all their predictions, or the predictions of struc-
tured and unstructured L, pruning. Note that, after each pruning iterations, the levels of sparsity in
the sub-networks will be different as they depends on the type of pruning applied.

layer: conv2

0 2 1 6 8 10 12 14 16 18 2
Pruning lteration

Figure 4: Jaccard distance between the mask for the second convolutional layer found by pruning
LeNet using Lj-unstructured pruning, and the mask found by other pruning methods listed in the
legend above, conditional on identical seed. Surprisingly, L;-unstructured behaves more like L-
structured pruning than a random unstructured pattern. This behavior is further investigated in Fig. E}

3.2 FINETUNING VS. REINITIALIZING

The “Lottery Ticket Hypothesis” [Frankle & Carbin| (2018) postulates that rewinding weights to the
initial (or early-stage (Frankle et al. 2019)) values after pruning is key to identifying lucky sub-
networks. In this section, we attempt to test this hypothesis in the experimental setting of small
networks (LeNet) and simple tasks (MNIST). We investigate, at the individual parameter level, how
the this procedure ends up differing from finetuning after pruning. Although higher quality lottery
tickets can be obtained by rewinding the weight values to their value after a small number of training
iterations (Frankle et al.,|2019)), this method was not tested in this work. To promote understanding,
we do not to focus on extracting state-of-the-art performing lottery tickets, in favor of minimizing
the influence of exogenous choices and ad-hoc heuristics for last-mile performance gains.

Finetuning is found to yield pruned networks that are comparable in performance with reinitialized
networks (at least in the simple-task-small-network regime) when given the same training budget
and the networks are pruned using the same technique, as shown in Fig.[2] When finetuning with
L1 -unstructured pruning, the magnitude of weights tends to continue growing, achieving higher final
values at later pruning iterations than their reinitialized counterparts. Despite achieving similar av-
erage performance in this simplified scenario, the interesting observation lies in the stark difference
between masks created by the same pruning technique when the weights are rewound or finetuned.

Under review as a workshop paper at ICLR 2020

ek ,'... - - 1 - .. ' ol '.‘_:. _.._.-.-_|I-

(a) 279 jteration of L1-S (b) 5" iteration of Li- (c) 5*® iteration of Li- (d) 5" iteration of L:-

pruning with rewinding ~ US pruning with rewind- US pruning with ¢ - US pruning with finetun-
ing sign(w;) reinitialization ing

= . el H e e W L - el " et m e, oo
(T

oW 47 % @ Tradit LM ow D A S

(e) 5*® iteration of L1-S (f) 10" iteration of L;- (g) 10*" iteration of L;- (h) 10" iteration of L:-

pruning with rewinding ~ US pruning with rewind- US pruning with ¢ - US pruning with finetun-
ing sign(w;) reinitialization ing

Figure 5: Masked weights in the 2" convolutional layer of LeNet. Rows represent two different
pruning iterations. The columns represent four different pruning and weight treatments. The convo-
lutional layer has 6 input channels and 16 output channels, with 3 x 3 filters. Masked out weights
appear in gray. Active, positive weights are depicted in red, negative weights in blue.

Fig.[5|shows that finetuning removes the natural tendency of L, -unstructured pruning with reinitial-
ization to approximate the behavior of L;-structured pruning. We can therefore primarily attribute
the emergence of that interesting connectivity pattern to the choice of reinitializing the weights. In
terms of mask structure, the difference between the effects of finetuning and lottery-ticket reinitial-
ization grows across all layers and logarithmically with pruning iterations (see Appendix [A).

3.3 DO THESE OBSERVATIONS HOLD IN LARGER NETWORKS AND DOMAINS?

These empirical results have been observed to hold in AlexNet and VGG-11 architectures on MNIST
and CIFAR-10 (see Appendix|[E). In even larger models, the nature of lottery tickets is still contended
and special care is required in ad-hoc training and pruning procedures to facilitate their discovery.

4 CONCLUSION

We show evidence against the uniqueness of winning tickets in various networks and tasks, identi-
fying different lucky sub-networks of competitive performance within the same parent network and
controlling for degeneracy by fixing experimental seeds. We also provide empirical results show-
ing that rewinding weights to the original values at initialization after each pruning iteration yields
sparsified networks that may not only be superior to finetuned sparse models from a performance
perspective, but also appear to possess structural advantages that might make them more suitable for
hardware-level implementations with inference-time speed-up effects.

We offer methods to experimentally analyze and compare the effects of different pruning techniques
on the performance of neural networks and on the nature of the masks generated by each. With the
explicit intent not to adopt training tricks to induce lottery tickets in state-of-the-art deep architec-
tures, this work intentionally restricts its focus to smaller models and domains. This work can be
further extended to better understand the role of new pruning methods, training tricks such as late
resetting, and applcations beyond image classification in terms of the similarity of masks obtained.

REFERENCES

Z. Allen-Zhu, Y. Li, and Y. Liang. Learning and Generalization in Overparameterized Neural Net-
works, Going Beyond Two Layers. arXiv e-prints, November 2018.

Dario Amodei and Danny Hernandez. Al and compute. May 2018. URL https://openai.
com/blog/ai-and-compute/.

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/

Under review as a workshop paper at ICLR 2020

Kalvin Bahia and Stefano Suardi. The state of mobile internet connectivity 2019. Technical report,
GSM Association, 2019.

M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine learning and the bias-
variance trade-off. arXiv e-prints, December 2018.

L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classification and Regression Trees.
The Wadsworth and Brooks-Cole statistics-probability series. Taylor & Francis, 1984. ISBN
9780412048418. URL https://books.google.com/books?id=IJwQx—WOmSyQC.

M De-Arteaga, W Herlands, D B Neill, and others. Machine learning for the developing world.
ACM Transactions on Management Information Systems, 2018. URL https://dl.acm.
org/doi/abs/10.1145/3210548\

Simon S. Du and Jason D. Lee. On the Power of Over-parametrization in Neural Networks with
Quadratic Activation. arXiv e-prints, art. arXiv:1803.01206, Mar 2018.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient Descent Provably Optimizes
Over-parameterized Neural Networks. arXiv e-prints, art. arXiv:1810.02054, Oct 2018.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. March 2018. URL http://arxiv.org/abs/1803.03635.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. The lottery ticket
hypothesis at scale. March 2019. URL http://arxiv.org/abs/1903.01611,

V Gokhale, J Jin, A Dundar, B Martini, and E Culurciello. A 240 g-ops/s mobile coprocessor
for deep neural networks. In 2014 IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, pp. 696-701, June 2014. URL http://dx.doi.org/10.1109/CVPRW.
2014.106l

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional net-
works using vector quantization. December 2014. URL http://arxiv.org/abs/1412.
6115l

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshirani. Surprises in High-
Dimensional Ridgeless Least Squares Interpolation. arXiv e-prints, art. arXiv:1903.08560, Mar
2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
NIPS Deep Learning and Representation Learning Workshop (2015), March 2015. URL http:
//arxiv.org/abs/1503.02531.

Paul Jaccard. Etude de la distribution florale dans une portion des alpes et du jura. Bulletin de la
Societe Vaudoise des Sciences Naturelles, 37:547-579, 01 1901. doi: 10.5169/seals-266450.

Q V Le. Building high-level features using large scale unsupervised learning. In 2013
IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8595-8598.
ieeexplore.ieee.org, May 2013. URL http://dx.doi.org/10.1109/ICASSP.2013.
6639343l

Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, R E Howard, Wayne E
Hubbard, and Lawrence D Jackel. Handwritten digit recognition with a Back-Propagation
network. In D S Touretzky (ed.), Advances in Neural Information Processing Systems
2, pp. 396-404. Morgan-Kaufmann, 1990a. URL http://papers.nips.cc/paper/
293-handwritten-digit-recognition-with-a-back-propagation—-network.
pdf.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In D S Touretzky (ed.),
Advances in Neural Information Processing Systems 2, pp. 598—605. Morgan-Kaufmann, 1990b.
URLhttp://papers.nips.cc/paper/250-optimal-brain—-damage.pdfl

Yann LeCun, Corinna Cortes, and Christopher J. C. Burges. The MNIST database of handwritten
digits., 1994. URL http://yann.lecun.com/exdb/mnist/\

https://books.google.com/books?id=JwQx-WOmSyQC
https://dl.acm.org/doi/abs/10.1145/3210548
https://dl.acm.org/doi/abs/10.1145/3210548
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1903.01611
http://dx.doi.org/10.1109/CVPRW.2014.106
http://dx.doi.org/10.1109/CVPRW.2014.106
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
http://dx.doi.org/10.1109/ICASSP.2013.6639343
http://dx.doi.org/10.1109/ICASSP.2013.6639343
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network.pdf
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network.pdf
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network.pdf
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf
http://yann.lecun.com/exdb/mnist/

Under review as a workshop paper at ICLR 2020

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop, 2017.

D Sculley, Jasper Snoek, Alex Wiltschko, and Ali Rahimi. Winner’s curse? on pace, progress, and
empirical rigor. In ICLR 2018 Workshop, February 2018. URL |https://openreview.net/
forum?id=rJWFOFywfl

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics, pp. 3645-3650. aclweb.org, 2019. URL https://www.aclweb.org/
anthology/P19-1355.pdf.

Chiyuan Zhang, Qianli Liao, Alexander Rakhlin, Karthik Sridharan, Brando Miranda, Noah
Golowich, and Tomaso Poggio. No . 067 april 4 , 2017 theory of deep learning iii : General-
ization properties of sgd by. 2017.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets:
Zeros, signs, and the supermask. In H Wallach, H Larochelle, A Beygelzimer, F dAlché-
Buc, E Fox, and R Garnett (eds.), Advances in Neural Information Processing Systems 32,
pp- 3592-3602. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
8618-deconstructing-lottery-tickets—-zeros-signs—and-the-supermask.
pdf.

https://openreview.net/forum?id=rJWF0Fywf
https://openreview.net/forum?id=rJWF0Fywf
https://www.aclweb.org/anthology/P19-1355.pdf
https://www.aclweb.org/anthology/P19-1355.pdf
http://papers.nips.cc/paper/8618-deconstructing-lottery-tickets-zeros-signs-and-the-supermask.pdf
http://papers.nips.cc/paper/8618-deconstructing-lottery-tickets-zeros-signs-and-the-supermask.pdf
http://papers.nips.cc/paper/8618-deconstructing-lottery-tickets-zeros-signs-and-the-supermask.pdf

Under review as a workshop paper at ICLR 2020

L, structured, amount=20%, axis=1, reinit L, structured, amount=20%, axis=1, reinit
L, structured, amount=20%, axis=1, finetune L, structured, amount=20%, axis=1, finetune
Ly unstructured, amount=20%, reinit hybrid, reinit
L, unstructured, amount=20%, finetune hybrid, finetune
layer: convl layer: conv2

for each pruning method

Jaccard distance to the "reinit” mask

i 2 i 6 8 1012 1518 i 3 1 6 8 1012 1518
Pruning Iteration Pruning Iteration

layer: fcl layer: fc2 layer: fc3
10
1.0 1.0

Jaccard distan
for

0.07 0.07 0.0

! 6 8 1012 1518 i 3 1 6 8 1012 1518 i 2 ! 6 8 1012 1518
Pruning Iteration Pruning Iteration Pruning Iteration

Figure 6: Jaccard distance between the masks found by pruning LeNet and rewinding weights, and
those found by finetuning after pruning, conditional on identical pruning techniques and seeds. The
comparison is conducted for each layer individually. Note the logarithmic scale on the x-axis.

A FINETUNING VS. REINITIALIZING (CONTINUED)

The Jaccard distance, or any other similarity measure among masks (e.g., the Hamming distance),
can be adopted to quantify the effects of the choice of finetuning or reinitializing weights after
pruning. As expected, the nature of the connectivity structure that emerges in an iterative series of
pruning and weight handling steps depends not only on the pruning choice but also on how weights
are handled after pruning. Finetuning yields significantly different masks from rewinding, for all
pruning techniques, and the difference (quantified in terms of the Jaccard distance) appears to grow
logarithmically in the number of pruning iterations (Fig. [6).

A.1 SIGN-BASED REINITIALIZION

Does the exact weight value at initialization carry any significance, or is all we care about its sign?

As proposed by [Zhou et al.| (2019), we experiment with reinitializing the pruned sub-network by
resetting each unpruned parameter ¢ to o, - sign(w;), where w; is the weight value of parameter ¢ at
initialization, and o, is the empirical standard deviation of the weights in layer L that contains the
parameter ¢. This is in contrast to rewinding to the initial weight values w;, as originally suggested
by [Frankle & Carbin|(2018), or finetuning without weight resetting.

The overall test accuracy of our experiments (Fig. [7) seems to support the observation of [Zhou
et al. (2019) that, as long as the sign matches the sign at initialization (and special care is taken
in re-scaling the standard deviation), resetting the weights to different values won’t affect the sub-
networks trainability and performance. Removing the factor of o causes the network not to converge;
as expected, keeping the weights within a numerically favorable range is important, and naively
focusing on the sign alone leads to poor performance.

Adopting mask similarity to test for equivalence among reinitialization techniques, the method
of Zhou et al.[(2019) is found to induce structure that differs more substantially from the connectiv-

Under review as a workshop paper at ICLR 2020

L1 structured pruning N . {1
amount=20%, axis=1, reinit LA
L1 structured pruning 2\ ! i
0.80 amount=20%, axis=1, finetune By [Y
+.. LI structured pruning N R
70] 1 emount=20%, axis=1, sigma x sign Y) ¢t
L1 unstructured pruning L:f
60 amount=20%, reinit
L1 unstructured pruning
0.50 amount=20%, finetune
.. L1 unstructured pruning
L amount=20%, sigma x sign
1.2 structured pruning
amount=20%, axis=1, reinit

Test Accuracy
s e
j}

. L2 structured pruning
0.20 amount=20%, axis=1, finetune

. L2 structured pruning
amount=20%, axis=1, sigma x sign

0.10 hybrid, reinit
- hybrid, finetune
[hybrid, sigma x sign

020 030 040 050 0.60 070 0.80 0.90 095 097 098
Fraction of Pruned Weights

Figure 7: Test accuracy comparison on the MNIST test set for SGD-trained LeNet models, pruned
using four different pruning techniques corresponding to the four colors, and reinitialized using three
different techniques corresponding to the line styles.

0 0.2 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.97 0.98 0.99
LeNet 60 48 36 30 24 18 12 6 3 2 1 0.6
AlexNet 61,100 48,880 36,660 30,550 24,440 18,330 12,220 6,110 3,055 1,833 1,222 611

VGGI11 132,863 106,290 79,718 66,431 53,145 39,859 26,572 13,286 6,643 3,985 2,657 1,328

Table 1: Number of parameters (in thousands) left in each model at each pruning fraction.

ity patterns generated by the method of |[Frankle & Carbin|(2018) than simple finetuning does, across
most layers and a set of common choices of magnitude-based pruning techniques (Fig. [§).

B EFFECTIVE PRUNING RATE

A subtle implementation detail involves the way in which the fraction of pruned weights is com-
puted, especially in convolutional layers pruned with structured pruning techniques. Take, for ex-
ample, the LeNet architecture used in this work. When applying pruning to produce results like
the ones displayed in Fig. [T} there are two ways to define the number of weights that get pruned
(displayed along the x-axis). The definition used in the main portion of the paper uses the fraction
of weights explicitly pruned by the decision rule that produces the mask for each layer. However,
this doesn’t account for the implicitly pruned weights, i.e. those weights that, due to downstream
pruning in following layers, are now disconnected from the output of the neural network. For this
reason, they receive no gradient and their value never changes from that at initialization. They can
technically take on any value, including 0, without affecting the output of the neural network. In
other words, they could effectively be pruned without any loss of performance. If we include these
weights in the effective fraction of pruned weights, Fig. [I] (now converted into Fig. [0(a)] for visual
coherence) is modified into Fig.[0(b)l When looking at effective sparsity, structure pruning appears
to be competitive, especially at high pruning fractions, because its effective sparsity naturally tends
to be higher. This also suggests that since the effective pruning rate per iteration is higher than
20% for structured pruning techniques, one could experiment with lowering it, to avoid aggressive
pruning and consequent loss in performance.

The number of parameters corresponding to various fractions of pruned weights in the models in-
vestigated in this work is listed in Table[I]

C PRUNING AFTER 1 TRAINING EPOCH

Is it necessary to train for many epochs before pruning to find high quality masks?

Under review as a workshop paper at ICLR 2020

(a) First convolutional (b) First convolutional (c) First convolutional (d) First convolutional
layer layer layer layer

(e) Second convolutional (f) Second convolutional (g) Second convolutional (h) Second convolutional
layer layer layer layer

(1) First fully-connected (j) First fully-connected (k) First fully-connected (1) First fully-connected
layer layer layer layer

(m) Second fully- (n) Second fully- (o) Second fully- (p) Second fully-
connected layer connected layer connected layer connected layer

(q) Third fully-connected (r) Third fully-connected (s) Third fully-connected (t) Third fully-connected
layer layer layer layer

Figure 8: Growth of the Jaccard distance between the mask found by rewinding after pruning and
three other techniques of handling weights (in order from highest to lowest opacity in the figures:
finetuning, rewinding to o - sign(w;), and rewinding to sign(w;). Each column of sub-figures cor-
responds to a pruning technique (same color code as in the rest of the paper); each row corresponds
to a layer in LeNet. Note the logarithmic scale on the x-axis.

10

Under review as a workshop paper at ICLR 2020

090
amount=20%, axis
L1 structured \
amount=20%, axis=1§.
om0 L1 unstructured

© amount=20%

_ L2 structured

050 amount=20%, axis=1| ',
fc-only L1 unstructured
amount=20%

030 hybrid

_ random structured
o= amount=20%, axis=1 |
random unstructured
amount=20%

Test Accuracy

010 020 030 040050060 070 080 oS0 085 037098 089

Fraction of Pruned Weights

(a) Number of pruned weights corresponds to loca-

tions where the mask is explicitly zero.

0% L-inf structured

= amount=20%, axis=1
© a0 L1 structured
Z amount=20%, axis=1
L om L1 unstructured
™ . amount=20%
E %1 L2 structured

030 amount=20%, axis=1

fc-only L1 unstructured
amount=20%

030 hybrid

random structured
amount=20%, axis=1
random unstructured
amount=20%

010 020 030040050050 070 080 00 095 037058 059

Effective Fraction of Pruned Weights

(b) Unchanged units included in the effective num-

ber of pruned weights.

Figure 9: Test accuracy achieved after 30 training iterations by LeNet models trained with SGD and
pruned with the methods listed in the legend. Each dot corresponds to a version of the model at the
end of training. Each line connects models obtained by iterative pruning from the same seed. The
two plots differ in the way the fraction of pruned weights is computed.

(a) 5*" iteration of L;-US pruning (b) 5" iteration of L;-US pruning
with rewinding (1 epoch) with rewinding (30 epochs)

] . wa"a . ="ag "1 “a ¥ a -y
el " . r Tmadint L ow =
(c) 10*" iteration of L;-US prun- (d) 10*" iteration of L;-US prun-
ing with rewinding (1 epoch) ing with rewinding (30 epochs)

Figure 10: Difference in mask structure in the second convolutional layer that emerges when pruning
after a single epoch (left) versus 30 epoch (right) of training (seed: 0).

To speed up the winning ticket search, we evaluate the option of shortening the training phases to
only 1 epoch of training per iteration.

We compare the masks obtained with this quicker method to the masks found after training the
network at each pruning iteration for 30 epochs (Fig. [I0). After a single epoch of training, the
ordinality of weight magnitudes has not yet settled to the solution corresponding to the values after
30 epochs of training. Although the majority of ranking swaps among weights, which can bring
parameters from the lowest magnitude quartile all the way to the top one, and vice versa, happen in
the first few epochs of training, minor movements later on in training might still be highly relevant
in obtaining a robust ranking for magnitude-based pruning.

D COMPLEMENTARITY OF LEARNED SOLUTIONS

Pruning the same network using different pruning techniques gives rise to sparse sub-networks that
differ not only in structure but also in the learned function that they compute. Given sufficient com-

11

Under review as a workshop paper at ICLR 2020

10000 10000

L, structured L, structured

8000 8000
Ly structured L, structured
L unstructured Ly unstructured e
6000 6000
‘hybrid hybrid
random unstructured random unstructured
4000 4000
random structured random structured
L-w structured e L« structured
2000 2000
fe-only Ly unstructured fo-only Ly unstructured JE
' EEEE T P ot 1 T 3 T § % I :T ¢%
5 5 & EE F % 5 5 £ 5 E E 5 B
© ° B © © © © 0 g g g & g g g g 0
g g E g E g E 2 2 g g g 2 g
% b E ‘é » b E % % E] ® % E
s 5 & E g ¢ £ 5 5 £ I
E g £ < 3 g E 3 4 o3
I z HI- 3
H B £ 5
& &
1 8t h . . . b) 20 th . . .
(a) pruning iteration (b) pruning iteration

Figure 11: Number of examples in the MNIST test set over which the sub-networks obtained through
each pruning technique agree on the prediction, on average (over 5 experimental seeds).

Pruning lieration Lo S L1 S L1 US hybrid randomUS randomS L_ooS fe-only Ly US | an fybrid+fe-only+

L, US
1 97.4 975 97.8 97.8 97.4 97.3 97.1 97.9 982 98.1
2 972 97.0 97.7 97.6 97.0 96.9 96.9 97.8 982 97.9
3 9.5 9.6 97.8 975 9.1 96.4 96.2 97.7 98.1 97.9
4 95.8 95.6 97.9 97.6 95.6 95.1 95.4 97.8 97.9 97.9
5 95.0 95.1 97.6 975 93.8 94.0 94.1 97.8 977 97.9
6 942 93.8 97.6 97.4 922 929 933 97.6 97.6 97.7
7 91.7 927 97.4 975 89.2 91.0 91.3 97.6 974 97.8
8 89.5 90.9 973 97.4 458 882 88.9 975 972 97.7
9 87.6 86.9 97.0 973 14.0 83.7 86.2 975 972 975
10 82.0 82.2 9.5 96.9 113 79.2 81.3 973 96.8 973
11 772 711 95.9 96.8 113 60.1 763 97.0 96.6 97.1
12 725 725 945 96.4 113 455 74.1 96.9 9.3 97.0
13 69.0 65.1 902 95.8 113 41.1 65.6 96.1 957 96.4
14 65.4 583 835 953 113 320 584 959 95.1 96.3
15 557 547 7.7 94.4 113 185 483 947 94.6 95.7
16 471 437 69.5 925 113 113 247 933 94.0 947
17 459 416 479 883 113 113 21.9 90.7 91.9 928
18 36.7 37.8 324 81.8 113 113 145 87.4 91.0 91.6
19 30.2 35.9 23.0 76.4 113 113 119 84.3 89.3 90.3
20 294 33.1 21.2 719 113 113 117 78.6 85.0 86.0

Table 2: Sub-network accuracies at each pruning iteration. Ensembling of sub-networks obtained
through different pruning techniques can yield higher performance, hinting at the complementarity
of information learned by each sub-network.

pute and memory budget, one can consider combining the predictions made by each sub-network to
boost performance. On the left side of Table[2} for each pruning iteration, the average accuracy of a
pruned LeNet model is listed, along with, on the right, the accuracies obtained by simply averaging
the predictions of all eight individual sub-networks (“all”’) and by averaging the predictions obtained
from the three most promising pruning techniques (last column).

The similarity of solutions can also be explored by looking at the heat maps of the agreement in
average class prediction across sub-networks obtained through different pruning techniques. For
reference, Fig. |1 1{provides these visualizations for the 18" and 20*" pruning iterations.

E ALEXNET AND VGG oN MNIST AND CIFAR-10

In this section, we confirm qualitative observations, previously reported on LeNet models, on the
structure of connectivity patterns that emerge from the application of L; unstructured pruning in the
context of AlexNet and VGG-11 architectures.

12

Under review as a workshop paper at ICLR 2020

(a) 15 conv in AlexNet (b) 1%* conv in VGG-11

(¢) 2" conv in AlexNet (d) 2" conv in VGG-11

(e) 3™ conv in AlexNet (f) 3" conv in VGG-11
(g) 4" conv in AlexNet (h) 4" conv in VGG-11

Figure 12: Binary weight masks for the first four convolutional layers of AlexNet trained on MNIST
(left) and VGG-11 trained on CIFAR-10 (right), at the 20th and last pruning iteration for L; unstruc-
tured pruning (seed: 0). Despite the unstructured nature of the pruning technique, structure emerges
along the input and output dimensions, which resembles the effect of structured pruning.

We train two individual sets of experiments starting from the base AlexNet model, one on MNIST,
one on CIFAR-10. VGG models are trained on CIFAR-10 exclusively.

Fig.[12]shows the binary masks obtained in the first four convolutional layers of the two models after
20 pruning iterations, with pruning rate of 20% of remaining connections at each iteration. Here,
the reported AlexNet properties refer to the MNIST-trained version. Preferential structure along the
input and output dimensions (in the form of rows or columns of unpruned filters) is visible across the
various layers, although visual inspection becomes hard and inefficient as the number of parameters
per layer grows.

13

	Introduction
	Method
	Pruning Methods
	Finetuning vs. Reinitializing

	Results
	Pruning Methods
	Finetuning vs. Reinitializing
	Do these observations hold in larger networks and domains?

	Conclusion
	Finetuning vs. Reinitializing (continued)
	Sign-Based Reinitializion

	Effective Pruning Rate
	Pruning After 1 Training Epoch
	Complementarity of Learned Solutions
	AlexNet and VGG on MNIST and CIFAR-10

