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Abstract—Cardiac auscultation (CA) is the auditory detection
of heart sounds to diagnose abnormalities, a crucial skill
that is both efficient and cost-effective in medical practice.
However, due to increased prevalence and usage of expensive
cardiac technologies, many new physicians and trainees
have difficulty performing essential cardiac examinations on
their patients, particularly diagnosing abnormalities through
auscultation using a stethoscope. A virtual pathology stethoscope
is a simulation-based solution that train students to perform
cardiac examinations by listening to abnormal heart sounds
in otherwise healthy standardized patients (SPs). This study
reports the accuracy of an electrocardiogram (ECG)-based
stethoscope tracking method for placing virtual symptoms in
correct auscultation regions. A modified stethoscope head with
two electrodes was used to pick up ECG signals at the four
primary auscultation sites. A one-dimensional convolutional
neural network (CNN) is then modeled to classify the location
of the stethoscope by taking advantage of subtle differences
in the ECG signals. A 91% accuracy was obtained, showing
promising performance gain over our previous methods. This
finding would significantly extend the simulation capabilities of
SPs by allowing trainees to perform realistic CA and hear CA
in clinical environment.

Index Terms—Electrocardiogram, convolutional neural
network, clinical simulation, auscultation.

I. INTRODUCTION

Cardiovascular Disease (CVD) is the leading cause of death
in the United States, accounting for 25% of the total death
each year [1], [2]. According to a projection done by the
American Heart Association [2], by the year 2030, 40% of the
U.S. population is expected to suffer from CVD. Furthermore,
the number of required primary care and specialty physicians
is expected to decline (an estimated shortage of 16,000
cardiologists by 2050). Thus, there is an urgent need prepare
more health-care workers for the expected demand.

Cardiac auscultation (CA) is the auditory detection of heart
sounds to diagnose abnormalities, a crucial skill that is both
efficient and cost-effective in medical practice [3]. However,
due to increased prevalence and usage of expensive cardiac
technologies, such as echocardiography, many new physicians
and trainees have difficulty performing essential cardiovascular
examinations on their patients, particularly diagnosing
abnormalities through auscultation using a stethoscope [4]–
[6]. Because the stethoscope is an inexpensive technology that
relies on the physician to accurately locate auscultation sites
and diagnose common structural cardiac conditions, trainees
should focus on perfecting this skill rather than turning to
cost-inefficient technologies that serve a similar function.

The areas of auscultation are generally correlated with
the cardiac valves. Proper auscultation requires a consistent
approach to site detection. Typically a sequential method is
used, assessing four different sites in the following order: (1)
upper right sternal border (aortic site), (2) upper left sternal
border (pulmonic site), (3) lower left sternal border (tricuspid
site), and (4) apex (mitral site) (see Fig. 1) [7], [8].

Many institutions have incorporated standardized patients
(SPs) into cardiac auscultation training; because these patients,
though actors, can portray patients and communicate their
symptoms [9]. SPs are typically healthy individuals, limiting
the kinds of abnormalities that students can hear [7]. We
are currently developing and testing an electrocardiogram-
based tracking stethoscope to simulate a realistic cardiac
examination [7], [10]. A stethoscope with ECG-based tracking
takes advantage of subtle ECG signal differences among the
four auscultation sites to identify which site the stethoscope
is placed upon, introducing the potential for playback devices
to produce an abnormal heart sound when the site is correctly
identified.

Our previous system, using a Random Forest classifier [10],
correctly identified the auscultation sites with an accuracy of
86% irrespective of the SP posture (seated or supine), obesity
(Body Mass Index), or sex. The accuracy also remained stable
for different stethoscope orientation tested by placing the
chest-piece at different angles over SP’s torso [7], [10]. While
our results showed that the method could be extended to a
wider subject pool, the accuracy required for an online real-
time tracking was found to be sub-optimal.

This paper investigates the performance of our newly-
developed prediction algorithm to provide higher accuracy
for a real-time application. The proposed system employs a
convolutional neural network (CNN) model to detect the four
CA sites. We trained the model on the raw signal as well as
on characteristic features (e.g. QRS wave) extracted from the
single-lead ECG recordings. Fig. 1 presents an overview of
the proposed system.

This paper is organized as follows; Section II will
summarize related works on virtual pathology stethoscope,
while Section III will present the methods for our proposed
CNN system. Section IV will highlight experimental results
and subsequent model evaluation. Finally, Section V will
discuss conclusive remarks and propose potential future work.



Fig. 1. Stethoscope apparatus and proposed system.(top-right) The four primary cardiac auscultation sites that the algorithm can detect. (top-left) Two direct-
contact electrodes fixed on a standard stethoscope head to record ECG signals. (bottom) The setup was attached to an e-health sensor connected to a Raspberry
Pi computer to run the ECG signal acquisition program.

II. RELATED WORKS

Virtual pathology stethoscope (VPS) technologies that can
play abnormal heart sounds during auscultation are being
developed to simulate a variety of cardiac conditions. One
commercially available instructor or SP triggered VPS is the
Ventriloscope [11]. The system uses infrared technology to
receive MP3 files from a remote transmitting unit. However,
Ventriloscope requires additional SP training to deliver a fully
integrated simulation. Also, the transmitter requires a direct
line of sight for signaling.

In [12], F. D. McKenzie, H. M. Garcia, and R. J. Castelino
designed a VPS that can automatically play abnormal sounds
by tracking the location of the stethoscope over the SPâs torso.
The system used magnetic tracking technology to find the
head of the stethoscope. However, the setup was complicated
and expensive. The sensor was also susceptible to magnetic
and electrical interference. Therefore, there is a need to
develop novel, inexpensive method for tracking the VPS in
SP-based cardiac auscultations training. Using ECG signals
for virtual pathology stethoscopes tracking has not been much
investigated.

Most ECG related research works focus on processing
the signal to monitor and diagnose cardiac abnormalities.
Earlier pattern recognition methods used characteristic features
extracted from the QRS and T waves [13]–[15] . However,
with the advancement of computational technology, the
past decade has seen the re-emergence of data-driven
deep learning. Convolutional neural networks (CNNs) have
proven to outperform other machine learning methods. For
instance, most recent works by [16]–[18] implementing a one-
dimensional CNN for ECG classification showed significant

gain in detection accuracy. Hannun et al. [16] developed a deep
CNN (34 layers) heart arrhythmias classifier and exceeded the
performance of board-certified cardiologists.

Fig. 2. Segmented ECG data from the Mitral area. Amplitude and interval
features are extracted from onset, peak, and offset of QRS and T waves.

We intend to provide high realism and increase the
likelihood of trainees to suspend disbelief; therefore,
immediate and accurate identification of the auscultation areas
is critical for fully immersive simulation experience. The
ability of CNN to classifies and learn useful features from
raw data without extensive feature engineering makes them
well suited candidate for our application.



III. METHOD

A. Data Acquisition and Preprocessing

The hardware prototype consisted of an e-health sensor
shield [19] coupled with the Raspberry Pi single board
computer [20]. The data was collected using the sensor shield
and an algorithm was developed on the Raspberry Pi to record
and transmit ECG signal(to PC) at a sampling rate of 1KHz.
Although processing and model training are done offline,
the embedded platform was designed for future real-time
inference were an immediate and accurate identification of
the auscultation areas is critical for fully immersive simulation
experience.

Noises and artifacts from breathing, body movements, and
power line interference were filtered using low pass and
high pass filters. A Butter-worth low pass filter with 40Hz
cut-off frequency was utilized to remove the high-frequency
power line noise. Similarly, a high pass FIR filter with a
cut-off frequency of 0.7Hz [21] was used to reduce baseline
wandering noises and low-frequency artifacts.

B. Segmentation and QRS wave Features

The Pan-Tompkins algorithm [21] was adapted to identify
the well-recognized Q, R, and S peaks along with their
corresponding time indices. Using a wave segmentation
method [22], T wave peak was found by searching for local
maxima within a pre-defined distance from the R peak.
Amplitude and interval features are then extracted from the
onset, peak, and offset of the QRS and T wave (Fig. 2).

These hand-crafted features may not fully capture the subtle
difference between the CA areas on different subjects. In
our second approach, we let a CNN automatically learn the
features from the raw ECG data. Using the RR interval, we
segmented the raw signal into one-second window equally
centered on each R-peak. For this step, the signal was down-
sampled to 200Hz ( or 200 samples per second); the model
was designed to predict the areas for every heartbeat.

C. Convolution Neural Network Model

We propose a neural network architecture to classify the
four CA (Fig. 3). The network consists of two hierarchical
1D CNN connected in series, followed by a pooling layer
and a dropout regularization. The CNN layers are grouped in
two sets to give the model higher chance of learning features
from the input data. A dropout layer is included to slow down
the learning process for a better final model. The pooling
layer reduces the learned features and consolidates them to the
essential elements.Finally, the learned features are flattened to
one long vector and pass through a fully connected layer for
CA prediction.

The fully connected layer ideally provides a buffer between
the learned features and feeds its output to the final
classification layer (SoftMax Layer) that provides the four
classes. Both input data ( hand-crafted features or raw data) are
feed to input to the network. Each cell has an inner dimension
of 128 parallel feature maps and a kernel size of 5. The initial
feature extraction from the input data is performed in the fully

connected layer, while a second fully connected layer collects
the output from the convolutional to the final classification
layer.

Fig. 3. The proposed model architecture of CNN

IV. EXPERIMENTAL RESULTS

A. Subjects and Acquisition Protocol

Ten standardized patients, 8 males and 2 females, from
the Eastern Virginia Medical School volunteered for the
study. Exclusion criteria include the presence of a pacemaker,
a history of chronic or hypertension. No health-related or
personal information was collected, and all subjects signed
consent forms before data collection.

Data collection consists of placing the stethoscope on the
bare skin over the four CA areas. The stethoscope was
modified to contain two direct-contact electrode sensors fixed
on to the diaphragm. The chest-piece was initially placed in
a horizontal orientation and then rotated in increments of 45
degrees, producing four different orientations for each CA site;
the ECG signal is symmetric, and hence, we only considered
horizontal to 135°orientations. This action mimicked that of
actual stethoscopy.

A total of 5 runs were collected at each auscultation site,
and each run consisted of 10 seconds of ECG signals. We
recorded the data from both seated and supine SP positions,
giving us a total of 160 ten-second ECG recordings for each
subject (4 CA areas, 4 orientations, 5 runs, and 2 postures).



B. Performance Evaluation

As stated above, we first denoise and filtered the data to
preserve the ECG signal boundaries. Depending on the heart
rate, each 10-second signal may contain 8 to 12 pluses. A
feature vector (size = 14) is then created from the amplitude,
and interval features extracted from the onset and peaks of
the fiducial points (Fig. 2). We used this baseline model for
comparison with our previous random forest-based setup [10].
The CNN is trained to output a class prediction for every beat.
The total training dataset is divide into 80% training and 20%
testing; care was taken to avoid subject overlap.

Table I reports the comparison on the model’s accuracy,
precision, recall (sensitivity), and F1 score. Although using
a limited amount of hand-crafted features, the CNN model
showed higher performance on all four statistical metrics, with
an accuracy of 89% and an F1 score of 87% ( a nearly 5%
improvement).

TABLE I
COMPARISON OF THE CNN MODEL WITH THE PREVIOUS WORK

Classifier Featuresa Accuracy Precision Recall F1

Random Forest [10] QRS + T waves 0.84 0.82 0.83 0.83

CNN (current method) QRS + T waves 0.89 0.85 0.87 0.86

a QRS and T- wave features.

We then trained the model with the segmented raw data,
and tested the performance for seated, supine, and combined
SP positions. Tables II and III depict the model performance
and confusion matrix, respectively. In all CA areas, the model
learned from raw data achieved higher classification accuracy
compared to the model trained on hand-crafted features. For
the supine position, we achieved an accuracy of 92% and an
F1 score of 91%. However, the performance was lower on the
seated position for all CA areas. Although efforts were made
to reduce noise from the data, we observed higher irregularities
(e.g. movement artifacts) on the most seated ECG data. This
may contribute to the lower results, but more test needs to be
done.

TABLE II
MODEL PERFORMANCE FOR DIFFERENT SP POSTURES

Dataa Average Model Performance(%)

Accuracy Precision Recall F1

Seated 86.1 86.0 86.0 86.2
Supine 92.0 92.0 92.0 92.0

Combined 90.0 90.0 90.0 90.0

a 1 sec row data (sampled at 200 pts/sec) segmented between each RR interval.

V. CONCLUSION

We investigated the accuracy and validity of a CNN
based virtual pathology stethoscope tracking system. This
involved collecting and examining ECG data from multiple

TABLE III
CONFUSION MATRIX

Aortic 495 10 6 12
Mitral 6 515 9 4

Pulmonic 13 5 503 12
Tricuspid 7 5 8 551

subjects. The preliminary analysis done on 10 subjects,
showed promising performance gain over our previous system.

However, testing on additional subjects as well as different
postures is required to determine the reliability of the system.
The information gained from this study would guide us in re-
designing the embedded platform for real-time inference were
an immediate and accurate identification of the auscultation
areas is critical for fully immersive simulation experience.
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