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ABSTRACT

Deep learning has evolved in healthcare and gone further to have a full clinical
deployment. We use recent advancements in breast cancer detection to answer the
following questions:

• Is it better to use pretrained models on natural images with medical
applications or pretrained models on medical images?

• Which models will transfer the required knowledge to the new medical target
tasks?

• Or using both pretrained models as feature extractor will help in the detection?

We experiment with the INBreast dataset of 410 mammograms. We test two neural
networks pretrained on (ImageNet and NYU v1.0 dataset of mammograms). The
results were not sufficient to fully answer the first two questions; the INBreast
dataset has few images, and this leads to rapid overfitting. However, when we use
both models as feature extractors, apply an oversampling technique for malignant
cases and then classify with a linear SVM, the performance metrics outperform the
deep neural network fine tuning results. And the NYU model as a feature extractor
outperforms Resnet50 (pretrained on ImageNet) extracted features.

1 INTRODUCTION

Breast cancer is the most common type of cancer among women in the USA (Atlanta, 2019) and
worldwide. In Egypt, Ibrahim et al. (2014) found that the breast cancer rate is 32.0% while liver cancer
comes the second with 13.5% among women when analyzing cancer types across different parts of
Egypt. Other countries in Africa suffer from the same problem: a high number of breast cancer cases.
There are approximately 94,378 diagnosed breast cancer cases in sub-Saharan Africa annually(Ltd,
2016; Adeloye et al., 2018). All of these statistics show that breast cancer is a worldwide problem, and
it motivated us to practically contribute to solutions with the recent advancements in deep learning.

Deep learning has been growing in the field of medical imaging and diseases prediction systems. It has
proven that it can push the automatic diagnosis systems forward and provide more reliable and helpful
assistance tools for doctors and radiologists. Three success stories where deep learning excelled in
radiology applications are: identifying skin cancer from dermatologist level photographs(Esteva et al.,
2017), automatic detection of diabetic retinopathy on a publicly available dataset of retinal fundus
images(Abràmoff et al., 2016) and classification and detection of thorax diseases from chest x-ray
images(Wang et al., 2017).

Section two provides an overview of the previous work that we are using in our study. Section three
explains the two methodologies we use to answer the questions of interest. Section four defines the
dataset we are using. Finally we put the experiments results and discuss them in the last two sections.

2 PREVIOUS WORK

Recently, researchers at New York University (NYU) published a new methodology using deep
learning to detect breast cancer from mammograms(Wu et al., 2019b). The study is based on a
recently curated dataset (NYU Breast Cancer Screening Dataset v1.0) that was reported in (Wu
et al., 2019a). The dataset was not publicly released, but the report explained in detail every step to
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curate the dataset and make it ready for deep learning training process. It consists of 229,426 digital
screening mammography exams (1,001,093 images) from 141,473 patients screened between 2010
and 2017 at NYU Langone Health. Each exam has four images of the breasts (each breast with
two views, CC and MLO, as shown in Figure 1. The dataset has three labels: a breast level label,
a pixel level label (from biopsied findings) and an exam level BIRADS label1, a number from one
to six indicating the initial diagnosis of the radiologist after screening a mammography (1 indicates
low risk while 6 indicates highest risk). The technical report is rich in information to any research
center or hospital which needs to start using AI in their screening and wants to prepare data for deep
learning. They start by excluding images that do not look like a normal mammogram, and the images
are segmented by radiologists indicating benign or malignant findings according to biopsies. Then
they cropped the images to exclude the background of the breast image.

Figure 1: Segmented regions by radiologists were used in the NYU model training [red: malignant
finding, green: benign finding, yellow: high risk benign finding]. The first three images from the left
are in the CC view, while the last two images are in the MLO view. Source:(Wu et al., 2019a)

Wu et al. (2019b) use deep learning with the aforementioned NYU v1.0 dataset. They train the dataset
in a two-stage training procedure: breast-level and pixel-level training tasks. In the breast-level
training (they call it the image-only model), they use a down-scaled version of the mammogram and
run it through four Convolutional Neural Networks (CNNs) (one CNN for each breast view) because
the computation resources limited their ability to train with high resolution images. The second
stage is a patch-level (i.e. pixel-level) training task. This stage uses a sliding window/patch of size
256× 256 to classify (presence/absence of a malignant or benign finding) according to the provided
pixel-level annotation of the findings by the radiologists. The second stage produces heatmaps of the
original mammograms (i.e. green patches for benign findings and red patches for malignant findings),
they tested with CNNs which take these heatmaps (for both findings) as additional two channels to the
low resolution mammogram images in the training phase and called this model (image + heatmap).
They concluded that using a hybrid model (the average of the radiologists and deep learning model
predictions) is more accurate than using any one of them alone (one of the author wrote a blog post
(Phang) about it for more details).

This work was the motivation of this report, their network helps in the cancer detection and achieves
an AUC of 0.895 in predicting whether there is a cancer in the breast. The question was: can we
extend the publicly released model by (Wu et al., 2019b) to other smaller datasets? or will it be useful
only for the patients in NYU Langone Health?

3 METHODOLOGY

3.1 TRANSFER LEARNING

Since most of the successful new deep learning models in breast cancer detection that were published
after (Wu et al., 2019b) were based on the NYU v1.0 non-public dataset, we seek to answer the
previously mentioned question “can we extend the publicly released model, by (Wu et al., 2019b),
trained on mammograms only, to other smaller mammogram datasets? would a pretrained network
on natural images (e.g. ImageNet dataset) perform better than the former model? . We fine-tune
pretrained models on ImageNet and NYU v1.0 datasets (for classifying single image) to see which
model will generalize to unseen smaller mammogram datasets. We also used both pretrained networks
as feature extractor then used Support Vector Machines (SVM) classifier with different kernels. We
used the common performance metrics for image classification task in our experiments.

1https://breast-cancer.ca/bi-rads/
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3.2 FEATURE EXTRACTORS

We extend our way of addressing the problem to apply traditional machine learning algorithms. We
extract the features of the INBreast dataset of 410 image from both models (NYU and ImageNet) and
use these features to train Logistic Regression (LR) and Support Vector Machine (SVM) classifiers
with different kernel functions. We evaluate on the INBreast binary classification task (i.e. BIRADS
1,2 and 3 are benign and BIRADS 4,5 and 6 are malignant). We use SVM and LR with reduced
number of features by using Lasso feature selection method. When we use the NYU model we
evaluate against NYU L-CC feature extractor only and an average of all four extractors used to train
the NYU model. We evaluate SVM with two different kernel functions (Linear and RBF) . We apply
a 10-fold cross validation of the balanced accuracy score. We over-sample the malignant cases using
the Synthetic Minority Over-sampling Technique (SMOTE)(Chawla et al., 2002).

4 DATASET

We aim to answer the question of interest with the available public datasets of mammograms. It is
surprising that there are few of them. There was another factor for choosing the dataset: the similarity
to the NYU dataset in terms of the resolution and intensity of the breast tissues in the images.

INBreast dataset (Moreira et al., 2012) was the first option in terms of similarity to the NYU dataset.
The dataset includes full-field digital mammograms and consists of 115 cases (410 mammogram
images) from which 90 cases have both breasts affected (four images per case) and 25 cases have (two
images per case). However, it is still a small number of images to train deep learning models from,
which require a larger number of data points to produce reliable results. Figure 2 shows an example
of a mammogram with BIRADS 6, the cropped version as in the pre-processing of the NYU’s deep
learning model and the generated heatmaps (benign and malignant) when using the (image+heatmap)
NYU’s model.

(a) (b) (c) (d) (e)

Figure 2: INBreast Mammogram Example of BIRADS 6. (a) CC View. (b) Cropped CC-view. (c)
NYU Input. (d) Benign Heatmap. (e) Malignant Heatmap

5 EXPERIMENTS AND RESULTS

First, we used the NYU model for inference on the INBreast dataset, without any fine-tuning. More
specifically, we used the single image prediction which is one of the Resnet-22 feature extractors
to predict four labels (benign, not benign, malignant and not malignant). The reason why the
NYU model uses four labels instead of binary labels (benign/malignant) is that a breast can have
more than finding with different labels for each and having four labels is a kind of alleviating the
misinterpretation for multiple findings. Figure 3 shows the distribution of how many data points in
INBreast are predicted as benign or malignant (we compare the two label values of ‘malignant’ and
‘benign’ instead of choosing a threshold to determine whether the prediction is malignant or benign).

(Raghu et al., 2019) studied the effect of transfer learning in the medical domain. They concluded
that using large pretrained networks on natural images (e.g. ImageNet) works as well as a small
network trained from scratch on medical images. They experimented with a few medical tasks where
the dataset has few hundred thousand images. Here, we are trying to extend their conclusion; is it
also useless to fine-tune large networks trained on ImageNet as compared to using small networks
trained-from-scratch on medical images?.
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Figure 3: Inference results of using NYU single-image model on the INBreast dataset. Each number
indicates a BIRADS number. Each BIRADS number has two bars indicating the number of predicted
cases as benign (green bar) and the number of detected malignant cases (red bar). The model predicts
most of the images as benign (this is more beneficial for BIRADS 1,2 and 3 than BIRADS 4, 5 and 6
which indicate high risk of having a malignant tumor.

INBreast dataset has accurate BIRADS labels but the biopsy results are not known; that is why we
experimented with both tasks: BIRADS classification and binary classification (assuming BIRADS
1,2 and 3 are b benign cases and BIRADS 4, 5 and 6 as malignant cases). We used few pretrained
models on ImageNet (resnet50, resnet18 and squeeznet) besides the NYU model. Table 1 shows
different performance metrics across the different pretrained models and settings (the stage indicates
which phase in the training process, e.g. using as feature extractor or fine tuning, the size of the batch
and the progressive resizing setting).

The results of feature extractor experiments are illustrated in Table 2. We evaluate on the INBreast
binary classification task (i.e. BIRADS 1,2 and 3 are benign and BIRADS 4,5 and 6 are malignant).
We apply a 10-fold cross validation of the balanced accuracy metric and report their mean and
standard deviation in the last two columns. Finally, We see a boost in performance metrics when we
over-sample the malignant cases using the SMOTE.

Model Pretrained on Task Accuracy AUROC Precision Recall

resnet50 ImageNet BIRADS 0.549 0.475 0.513 0.481

resnet18 ImageNet BIRADS 0.573 0.390 0.686 0.524

squeeznet ImageNet BIRADS 0.427 0.459 0.270 0.210

resnet50 ImageNet Binary 0.866 0.9 0.737 0.7

resnet18 ImageNet Binray 0.854 0.872 0.75 0.6

squeeznet ImageNet Binary 0.732 0.695 0.437 0.35

NYU (L-MLO) NYU v1.0 Binary 0.780 0.544 0.625 0.25

NYU (R-CC) NYU v1.0 Binary 0.793 0.581 0.667 0.3

Table 1: Fine tuning both Resnet50 pretrained on ImageNet and the NYU network trained on the
NYU v1.0 dataset. Common performance metrics are in the last four columns.
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[HTML]C0C0C0 Model balanced Feature Extractor # Features Accuracy AUC mean std

SVM+Linear No ImageNet Resnet50 2048 0.6544 0.562 0.58 0.09

SVM+Linear No ImageNet Resnet50 217 0.8676 0.8362 0.74 0.11

SVM+RBF No ImageNet Resnet50 217 0.75 0.5143 0.51 0.03

LR No ImageNet Resnet50 217 0.8676 0.8362 0.76 0.12

SVM+Linear SMOTE ImageNet Resnet50 217 0.9317 0.9345 0.94 0.03

LR SMOTE ImageNet Resnet50 217 0.9122 0.9157 0.95 0.04

SVM+Linear No NYU L-CC 4096 0.6912 0.5680 0.56 0.07

SVM+RBF No NYU L-CC 4096 0.7426 0.5 0.50 0.03

SVM+Linear No NYU L-CC 350 0.8750 0.8412 0.74 0.10

SVM+RBF No NYU L-CC 350 0.7426 0.5 0.50 0.03

LR No NYU L-CC 350 0.8456 0.8027 0.72 0.11

SVM+Linear SMOTE NYU L-CC 350 0.9610 0.9631 0.96 0.02

LR SMOTE NYU L-CC 350 0.9317 0.9361 0.94 0.04

SVM+Linear No NYU Avg 325 0.8162 0.7269 0.73 0.07

LR No NYU Avg 325 0.8162 0.7082 0.72 0.08

SVM+Linear SMOTE NYU Avg 325 0.9756 0.9758 0.97 0.04

SVM+RBF SMOTE NYU Avg 325 0.6683 0.6733 0.72 0.07

LR SMOTE NYU Avg 325 0.9610 0.9623 0.97 0.03

Table 2: Results of the binary task classification of the INBreast dataset (i.e. BIRADS1,2 and 3
are benign and BIRADS4,5 and 6 are malignant). The used models are SVMs with two different
kernel functions (Linear and RBF) and Logistic Regression (LR). Lasso feature selection is used and
the number of used features is stated in the 4th column. A 10-fold cross validation of the balanced
accuracy is depicted in the last two columns (the mean and standard deviation of the 10 folds).
SMOTE was used as an oversampling technique for the malignant class. We use both one feature
extractor from NYU model and an average over the four extractors.

6 DISCUSSION

Figure 3 shows that we can not use the NYU model for inference even if we think the target dataset
was close in distribution to the NYU v1.0 dataset; because it miss-classifies most of the high risk
cases as benign ones. Table 1 shows that using pre-trained models on ImageNet is still effective in
this case. However, we can not conclude that the network is robust and can be used for inference
with other datasets. Resnet50 with ImageNet performs better that Resnet18 and Squeeznet which is
something we need to investigate more by visualizing the learnt features and measuring the similarity
of the networks. We need to apply the same methodology to other datasets and see if they have
similar results, only then we can make conclusions.

On the other hand, the extracted features from both models seem to be linearly separable in a high
dimension but probably lower than the total number of extracted features by a factor of 0.1. Linear
SVM with SMOTE oversampling outperforms the finetuning experiments results as well as an RBF
SVM classifier. Comparing the two models (trained on ImageNet and NYU v1.0 datasets) it seems
the latter has the capacity to extract more meaningful features than the ImageNet model which is
reflected in the difference in their performance with the linear SVM.

7 CONCLUSION AND FUTURE WORK

It is not clear whether using a smaller networks trained on medical images from scratch would be
useless because we have tested with a small dataset. We may need traditional machine learning
algorithms if we think of small scale healthcare institutions. We might need to see how radiologists
are trained to interpret such images so that we can mimic the process: we need few-hundred learning
techniques to study the effect of transfer learning with a dataset of the INBreast size. Also, studying
when transfer learning is useful, redundant or harmful is highly required.

In the future, we may head to other techniques that try narrowing down the gap between the source
task and target task such as domain adaptation techniques to extend the usability to other different
datasets of mammograms. There is a final note about the behaviour of the transfer learning in the
performed experiments: if we are interested in detecting cancer cells in the human body through any
medical image type, maybe we need to collect an ImageNet-like medical dataset of various types of
medical images and different body parts which share similar characteristics of cancer cells.
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