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ABSTRACT

Compared to dense networks, sparse neural networks are shown to be more param-
eter efficient, more compute efficient and have been used to decrease wall clock
inference times. There is a large body of work on training dense networks to yield
sparse networks for inference, but this limits the size of the largest trainable sparse
model to that of the largest trainable dense model. In this paper we introduce a
method to train sparse neural networks with a fixed parameter count and a fixed
computational cost throughout training, without sacrificing accuracy relative to
existing dense-to-sparse training methods. Our method updates the topology of
the sparse network during training by using parameter magnitudes and infrequent
gradient calculations. We show that this approach requires fewer floating-point
operations (FLOPs) to achieve a given level of accuracy compared to prior tech-
niques. We demonstrate state-of-the-art sparse training results on a variety of
networks and datasets, including ResNet-50, MobileNets on Imagenet-2012, and
RNNs on WikiText-103.

1 INTRODUCTION

The parameter and floating point operation (FLOP) efficiency of sparse neural networks is now well
demonstrated on a variety of problems (Han et al., 2015; Srinivas et al., 2017). Multiple works
have shown inference time speedups are possible using sparsity for both Recurrent Neural Networks
(RNNs) (Kalchbrenner et al., 2018) and Convolutional Neural Networks (ConvNets) (Park et al.,
2016; Elsen et al., 2019). Currently, the most accurate sparse models are obtained with techniques
that require, at a minimum, the cost of training a dense model in terms of memory and FLOPs (Zhu
& Gupta, 2018; Guo et al., 2016), and sometimes significantly more (Molchanov et al., 2017).

This paradigm has two main limitations. First, the maximum size of sparse models is limited to
the largest dense model that can be trained; even if sparse models are more parameter efficient, we
can’t use pruning to train models that are larger and more accurate than the largest possible dense
models. Second, it is inefficient; large amounts of computation must be performed for parameters
that are zero valued or that will be zero during inference. Additionally, it remains unknown if
the performance of the current best pruning algorithms is an upper bound on the quality of sparse
models. Gale et al. (2019) found that three different dense-to-sparse training algorithms all achieve
about the same sparsity / accuracy trade-off. However, this is far from conclusive proof that no better
performance is possible.

The Lottery Ticket Hypothesis (Frankle & Carbin, 2019) hypothesized that if we can find a sparse
neural network with iterative pruning, then we can train that sparse network from scratch, to the
same level of accuracy, by starting from the original initial conditions. In this paper we introduce a
new method for training sparse models without the need of a “lucky” initialization; for this reason,
we call our method “The Rigged Lottery” or RigL∗. We make the following specific contributions:

• We introduce RigL - an algorithm for training sparse neural networks that requires memory
and computational cost proportional to density of the network.

• We perform an extensive empirical evaluation of RigL on computer vision tasks. We show
that RigL achieves higher quality than all previous techniques for a given computational
cost.

∗Pronounced ”wriggle”.
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• We show the surprising result that RigL can find more accurate models than the current best
dense-to-sparse training algorithms.

2 RELATED WORK

Research on finding sparse neural networks dates back decades, at least to Thimm & Fiesler (1995)
who concluded that pruning weights based on magnitude was a simple and powerful technique.
Ström (1997) later introduced the idea of retraining the previously pruned network to increase ac-
curacy. Han et al. (2016b) went further and introduced multiple rounds of magnitude pruning and
retraining. This is, however, relatively inefficient, requiring ten rounds of retraining when remov-
ing 20% of the connections to reach a final sparsity of 90%. To overcome this problem, Narang
et al. (2017) introduced gradual pruning, where connections are slowly removed over the course of
a single round of training. Zhu & Gupta (2018) refined the technique to minimize the amount of
hyper-parameter selection required. Gale et al. (2019) examined magnitude pruning, L0 Regular-
ization, and Variational Dropout and concluded that they all achieve about the same accuracy versus
sparsity trade-off on ResNet-50 and Transformer architectures.

Training techniques that allow for sparsity throughout the entire training process were, to our knowl-
edge, first introduced in Deep Rewiring (DeepR) (Bellec et al., 2018). Sparse Evolutionary Training
(SET) (Mocanu et al., 2018) proposed a simpler scheme where weights are pruned according to
the standard magnitude criterion used in pruning and are added back at random. Dynamic Sparse
Reparameterization (DSR) (Mostafa & Wang, 2019) introduced the idea of allowing the parameter
budget to shift between different layers of the model, allowing for non-uniform sparsity. This allows
the model to distribute parameters where they are most effective. Unfortunately, the models under
consideration are mostly convolutional networks, so the result of this parameter reallocation (which
is to decrease the sparsity of early layers and increase the sparsity of later layers) has the overall
effect of increasing the FLOP count because the spatial size is largest in the early layers. Sparse
Networks from Scratch (SNFS) (Dettmers & Zettlemoyer, 2019) introduces the idea of using the
momentum of each parameter as the criterion to be used for growing weights and demonstrates it
leads to an improvement in test accuracy. Like DSR, they allow the sparsity of each layer to change
and focus on a constant parameter, not FLOP, budget. Importantly, the method requires computing
gradients and updating the momentum for every parameter in the model, even those that are zero,
at every iteration. This can result in a significant amount of overall computation. Additionally, de-
pending on the model and training setup, the required storage for the full momentum tensor could
be prohibitive. Single-Shot Network Pruning (SNIP) (Lee et al., 2019) attempts to find an initial
mask with one-shot pruning and uses the saliency score of parameters to decide which parameters
to keep. After pruning, training proceeds with this static sparse network.

There has also been a line of work investigating the Lottery Ticket Hypothesis (Frankle & Carbin,
2019). Frankle et al. (2019) showed that the formulation must be weakened to apply to larger
networks such as ResNet-50 (He et al., 2015). In large networks, instead of the original initialization,
the values after thousands of optimization steps must be used for initialization. Zhou et al. (2019)
showed that ”winning lottery tickets” obtain non-random accuracies even before training has started.
Though the possibility of training sparse neural networks with a fixed sparsity mask using lottery
tickets is intriguing, it remains unclear whether it is possible to generate such initializations – for
both masks and parameters – de novo.

3 RIGGING THE LOTTERY

Our method, RigL, is illustrated in Figure 1. RigL starts with a random sparse network, and at reg-
ularly spaced intervals it removes a fraction of connections based on their magnitudes and activates
new ones using instantaneous gradient information. After updating the connectivity, training contin-
ues with the updated network until the next update. The main parts of our algorithm are explained
below.

(0) Notation. Given a dataset D with individual samples xi and targets yi, we aim to minimize
the loss function

∑
i L(fΘ(xi), yi), where fΘ(·) is a neural network with parameters Θ ∈ RN .

Parameters of the lth layer are denoted with Θl which is a length N l vector. A sparse layer keeps
only a fraction sl ∈ (0, 1) of its connections and parameterized with vector θl of length (1− sl)N l.
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Figure 1: RigL improves the optimization of sparse neural networks by leveraging weight magnitude
and gradient information to jointly optimize model parameters and connectivity.

Parameters of the corresponding sparse network is denoted with θ. Finally, the overall sparsity of a
sparse network is defined as the ratio of zeros to the total parameter count, i.e. S =

∑
l s

lN l

N

(1) Sparsity Distribution. There are many ways of distributing the non-zero weights across the
layers while maintaining a certain overall sparsity. We avoid re-allocating parameters between layers
during the training process as it makes it difficult to target a specific final FLOP budget, which is
important for many applications. We consider the following strategies:

1. Uniform: The sparsity sl of each individual layer is equal to the total sparsity S. In this
setting, we keep the first layer dense, since sparsifying this layer has a disproportional effect
on the performance and almost no effect on the total size.

2. Erdős-Rényi-Kernel (ERK): This method modifies the original Erdős-Rényi Mocanu et al.
(2018) formulation by including the kernel dimensions in the scaling factors. In other
words, the number of parameters of the sparse convolutional layers are scaled proportional
to 1− nl−1+nl+wl+hl

nl−1∗nl∗wl∗hl , wherewl and hl are the width and the height of the l’th convolutional
kernel. ERK allocates higher sparsities to the layers with more parameters while allocating
lower sparsities to the smaller ones.

In all methods, the bias and batch-norm parameters are kept dense, since these parameters scale with
total number of neurons and have a negligible effect on the total model size.

(2) Update Schedule. The update schedule is defined by the following parameters: (1)∆T : the
number of iterations between sparse connectivity updates, (2) Tend: the iteration at which to stop
updating the sparse connectivity, (3) α: the initial fraction of connections updated and (4) fdecay: a
function, invoked every ∆T iterations until Tend, possibly decaying the fraction of updated connec-
tions over time. For the latter, as in Dettmers & Zettlemoyer (2019), we use cosine annealing, as we
find it slightly outperforms the other methods considered.

fdecay(t; α, Tend) =
α

2

(
1 + cos

(
tπ

Tend

))
(3) Drop criterion. Every ∆T steps we drop the connections given by ArgTopK(−|θl|, (1 −
sl)N l), where ArgTopK(v, k) gives the indices of the top-k elements of vector v.

(4) Grow criterion. The novelty of our method lies in how we grow new connections. We grow the
connections with highest magnitude gradients, ArgTopKi/∈θl\Idrop(|∇ΘlL|, k), where θl \ Idrop is
the set of active connections remaining after step (3). Newly activated connections are initialized
to zero and therefore don’t affect the output of the network. However they are expected to receive
gradients with high magnitudes in the next iteration and therefore reduce the loss fastest. As long as
∆T > 1

1−s , the extra work of calculating dense gradients is amortized and still proportional to 1−S.
This is in contrast to the method of Dettmers & Zettlemoyer (2019), which requires calculating and
storing the full gradients at each optimization step.

4 EMPIRICAL EVALUATION

Our experiments include image classification using CNNs on the ImageNet-2012 (Russakovsky
et al., 2015). We observe similar results on language modelling tasks. We repeat all of our experi-
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Method Top-1
Acc.

FLOPs
(Train)

FLOPs
(Test)

Top-1
Acc.

FLOPs
(Train)

FLOPs
(Test)

Dense 76.8 1x
(3e18)

1x
(8e9)

S=0.8 S=0.9
Static 70.6 0.23x 0.23x 65.8 0.10x 0.10x
SNIP 72.0 0.23x 0.23x 67.2 0.10x 0.10x

Small-Dense 72.1 0.20x 0.20x 68.9 0.12x 0.12x
SET 72.9 0.23x 0.23x 69.6 0.10x 0.10x
RigL 74.6 0.23x 0.23x 72.0 0.10x 0.10x

Small-Dense5× 73.9 1.01x 0.20x 71.3 0.60x 0.12x
RigL5× 76.6 1.14x 0.23x 75.7 0.52x 0.10x

Static (ERK) 72.1 0.42x 0.42x 67.7 0.24x 0.24x
DSR* 73.3 0.40x 0.40x 71.6 0.30x 0.30x

RigL (ERK) 75.1 0.42x 0.42x 73.0 0.25x 0.24x
RigL5× (ERK) 77.1 2.09x 0.42x 76.4 1.23x 0.24x

SNFS* 74.2 n/a n/a 72.3 n/a n/a
SNFS (ERK) 75.2 0.61x 0.42x 72.9 0.50x 0.24x

Pruning* 75.6 1.00x 0.23x 73.9 1.00x 0.10x
Pruning1.5×* 76.5 1.50x 0.23x 75.2 1.50x 0.10x
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Figure 2: (left) Performance and cost of training 80% and 90% sparse ResNet-50s on the Imagenet-
2012 classification task. We report FLOPs needed for training and test (inference on single sample)
and normalize them with the FLOPs of a dense model (see Appendix A for details on how FLOPs
are calculated). Methods with superscript ‘*’ indicates reported results in corresponding papers.
Pruning results are obtained from Gale et al. (2019). (top-right) Performance of sparse training
methods on training 80% sparse ResNet-50 with uniform sparsity distribution. Points at each curve
correspond to the individual training runs with training multipliers from 1 to 5 (except pruning which
is scaled between 0.5 and 2). The number of FLOPs required to train a standard dense ResNet-50
along with its performance is indicated with a dashed red line. (bottom-right) Performance of RigL
at different sparsity levels with extended training.

ments 3 times and report the mean and standard deviation. We use the TensorFlow Model Pruning
library (Zhu & Gupta, 2018) for our pruning baselines. A Tensorflow (Abadi et al., 2015) imple-
mentation of our method along with three other baselines (SET, SNFS, SNIP) can be found here†.

The default number of training steps used for training dense networks might not be optimal for sparse
training with dynamic connectivity. In our experiments we observe that sparse training methods
benefit significantly from increased training steps. When increasing the training steps by a factor
M , the anchor epochs of the learning rate schedule and the end iteration of the mask update schedule
are also scaled by the same factor; we indicate this scaling with a subscript (e.g. RigLM×).

In all experiments in this section, we use SGD with momentum as our optimizer. We set the momen-
tum coefficient of the optimizer to 0.9, L2 regularization coefficient to 0.0001, and label smoothing
(Szegedy et al., 2016) to 0.1. The learning rate schedule starts with a linear warm up reaching its
maximum value of 1.6 at epoch 5 which is then dropped by a factor of 10 at epochs 30, 70 and 90.
We train our networks with a batch size of 4096 for 32000 steps which roughly corresponds to 100
epochs of training. Our training pipeline uses standard data augmentation, which includes random
flips and crops.

4.1 RESNET-50 ON IMAGENET-2012 TASK

Figure 2-top-right summarizes the performance of various methods on training an 80% sparse
ResNet-50. We also train small dense networks with equivalent parameter count. All sparse net-
works use a uniform layer-wise sparsity distribution unless otherwise specified and a cosine update
schedule (α = 0.3, ∆T = 100). Overall, we observe that the performance of all methods improves
with training time; thus, for each method we run extended training with up to 5× the training steps
of the original.
†https://bit.ly/icml rigl
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As noted by Gale et al. (2019), Evci et al. (2019), Frankle et al. (2019), and Mostafa & Wang (2019),
training a network with fixed sparsity from scratch (Static) leads to inferior performance. Training
a dense network with the same number of parameters (Small-Dense) gets better results than Static,
but fails to match the performance of dynamic sparse models. SET improves the performance over
Small-Dense, however saturates around 75% accuracy indicating the limits of growing new connec-
tions randomly. Methods that use gradient information to grow new connections (RigL and SNFS)
obtain higher accuracies, but RigL achieves the highest accuracy and does so while consistently
requiring fewer FLOPs than the other methods.

Given that different applications or scenarios might require a limit on the number of FLOPs for
inference, we investigate the performance of our method at various sparsity levels. As mentioned
previously, one strength of our method is that its resource requirements are constant throughout
training and we can choose the level of sparsity that fits our training and/or inference constraints. In
Figure 2-bottom-right we show the performance of our method at different sparsities and compare
them with the pruning results of Gale et al. (2019), which uses 1.5x training steps, relative to the
original 32k iterations. To make a fair comparison with regards to FLOPs, we scale the learning
schedule of all other methods by 5x. Note that even after extending the training, it takes less FLOPs
to train sparse networks using RigL compared to the pruning method‡.

RigL, our method with constant sparsity distribution, exceeds the performance of magnitude based
iterative pruning in all sparsity levels while requiring less FLOPs to train. Sparse networks that
use Erdős-Renyi-Kernel (ERK) sparsity distribution obtains even greater performance. For exam-
ple ResNet-50 with 96.5% sparsity achieves a remarkable 72.75% Top-1 Accuracy, around 3.5%
higher than the extended magnitude pruning results reported by Gale et al. (2019). As observed
earlier, smaller dense models (with the same number of parameters) or sparse models with a static
connectivity can not perform at a comparable level.

A more fine grained comparison of sparse training methods is presented in Figure 2-left. Methods
using uniform sparsity distribution and whose FLOP/memory footprint scales directly with (1-S) are
placed in the first sub-group of the table. The second sub-group includes DSR and networks with
ERK sparsity distribution which require a higher number of FLOPs for inference with same param-
eter count. The final sub-group includes methods that require the space and the work proportional
to training a dense model.

5 DISCUSSION & CONCLUSION

In this work we introduced ‘Rigged Lottery’ or RigL, an algorithm for training sparse neural net-
works efficiently. For a given computational budget RigL achieves higher accuracies than existing
dense-to-sparse and sparse-to-sparse training algorithms. RigL is useful in three different scenarios:
(1) To improve the accuracy of sparse models intended for deployment; (2) To improve the accuracy
of large sparse models which can only be trained for a limited number of iterations; and (3) Com-
bined with sparse primitives to enable training of extremely large sparse models which otherwise
would not be possible.

Progress in the first two scenarios are important for adapting state of art Machine Learning al-
gorithms and models in resource constrained settings and RigL is pushing the frontier. The third
scenario is unexplored due to the lack of hardware and software support for sparsity. Nonetheless,
work continues to improve the performance of sparse networks on current hardware (Hong et al.,
2019; Merrill & Garland, 2016), and new types of hardware accelerators will have better support for
parameter sparsity (Wang et al., 2018; Mike Ashby, 2019; Liu et al., 2018; Han et al., 2016a; Chen
et al., 2019). RigL provides the tools to take advantage of, and motivation for, such advances.
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A CALCULATING FLOPS OF MODELS AND METHODS

In order to calculate FLOPs needed for a single forward pass of a sparse model, we count the total
number of multiplications and additions layer by layer for a given layer sparsity sl. The total FLOPs
is then obtained by summing up all of these multiply and adds.

Different sparsity distributions require different number of FLOPs to compute a single prediction.
For example Erdős-Renyi-Kernel distributions usually cause earlier layers to be less sparse than
the later layers (see Appendix B). The inputs of earlier layers have greater spatial dimensions, so
a convolutional kernel that works on such inputs will require more FLOPs to compute the output
features compared to later layers. Thus, having earlier layers which are less sparse results in a
higher total number of FLOPs required by a model.

Training a neural network consists of 2 main steps:

1. forward pass: Calculating the loss of the current set of parameters on a given batch of
data. During this process layer activations are calculated in sequence using the previous
activations and the parameters of the layer. Activation of layers are stored in memory for
the backward pass.

2. backward pass: Using the loss value as the initial error signal, we back-propagate the
error signal while calculating the gradient of parameters. During the backward pass each
layer calculates 2 quantities: the gradient of the activations of the previous layer and the
gradient of its parameters. Therefore in our calculations we count backward passes as two
times the computational expense of the forward pass. We omit the FLOPs needed for batch
normalization and cross entropy.

Dynamic sparse training methods require some extra FLOPs to update the connectivity of the neural
network. We omit FLOPs needed for dropping the lowest magnitude connections in our calculations.
For a given dense architecture with FLOPs fD and a sparse version with FLOPs fS , the total FLOPs
required to calculate the gradient on a single sample is computed as follows:

• Static Sparse and Dense. Scales with 3 ∗ fS and 3 ∗ fD FLOPs, respectively.

• Snip. We omit the initial dense gradient calculation since it is negligible, which means
Snip scales in the same way as Static methods: 3 ∗ fS FLOPs.

• SET. We omit the extra FLOPs needed for growing random connections, since this op-
eration can be done on chip efficiently. Therefore, the total FLOPs for SET scales with
3 ∗ fS .

• SNFS. Forward pass and back-propagating the error signal needs 2 ∗ fS FLOPs. However,
the dense gradient needs to be calculated at every iteration. Thus, the total number of
FLOPs scales with 2 ∗ fS + fD.

• RigL. Iterations with no connection updates need 3 ∗ fS FLOPs. However, at every ∆T
iteration we need to calculate the dense gradients. This results in the average FLOPs for
RigL given by (3∗fS∗∆T+2∗fS+fD)

(∆T+1) .
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Figure 3: Sparsities of individual layers of the ResNet-50.

B SPARSITY OF INDIVIDUAL LAYERS FOR SPARSE RESNET-50

Sparsity of ResNet-50 layers given by the Erdős-Rényi-Kernel sparsity distribution plotted in Figure
3.
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