
Streamlining Tensor
and Network Pruning
in PyTorch
Workshop on Practical ML for Developing Countries, ICLR 2020
Michela Paganini (Facebook AI Research), Jessica Forde (Brown University)

https://pml4dc.github.io/iclr2020/

2

What is pruning?

• Pruning methods selectively set weights of a neural
network to zero, sparsifying the model

• Pruned models can maintain the accuracy of the
original model and gain computational efficiency for
on-device use

• Methods remove weights based on different
heuristics, such as their absolute value

• Weights can also be removed in a structured way,
zero-ing out an entire channel, or in a unstructured
manner

• In PyTorch, pruning is performed through the
application of a mask onto the parameter

3

Different tensor pruning techniques enabled
under a unified framework

New pruning technique?

Just subclass BasePruningMethod and
implement compute_mask!

torch.nn.utils.prune

https://pytorch.org/docs/master/_modules/torch/nn/utils/prune.html#CustomFromMask
https://pytorch.org/docs/master/_modules/torch/nn/utils/prune.html#PruningContainer
https://pytorch.org/docs/master/_modules/torch/nn/utils/prune.html#Identity
https://pytorch.org/docs/master/_modules/torch/nn/utils/prune.html#RandomUnstructured
https://pytorch.org/docs/master/_modules/torch/nn/utils/prune.html#L1Unstructured
https://pytorch.org/docs/master/_modules/torch/nn/utils/prune.html#RandomStructured
https://pytorch.org/docs/master/_modules/torch/nn/utils/prune.html#LnStructured

4

torch.nn.utils.prune
implements the logic that defines which portions of the tensors will be zeroed out

while accounting for previously pruned entries

tensor "remove lowest
magnitude

weights"

mask

input output

(through a prune.PruningContainer) it handles the case in which the tensor had
previously been pruned by computing the valid entries in the tensor that can still

be pruned and then applying the new pruning technique exclusively on those
entries

tensor

previous mask

input

"remove lowest
magnitude
remaining
weights"

defines the interface → concrete subclasses must implement the logic

For example, in prune.L1Unstructured:

output

mask

PruningContainer

SomePruningMethod() AnotherPruningMethod()

PruningContainer()

[

masks[0]

compute_mask(t)

masks[1]

compute_mask(t[slice])

{cumulative_mask} {cumulative_mask}

]FinalPruningMethod()

masks[2]

compute_mask(t[slice][slice])

, ,

{cumulative_mask}

6

torch.nn.utils.prune
Reparametrizes of the pruned tensor in terms of the original tensor and the

pruning mask, and adds a forward pre-hook to enable pruning on the fly.

1. if there is any previous mask applied to this parameter
I. fetch the previous mask
II. combine successive pruning calls into a prune.PruningContainer

2. move the unpruned parameter to "<param_name>_orig"
3. compute new mask via compute_mask
4. add mask as a buffer named "<param_name>_mask"
5. attach the pruned version of the tensor as an attribute
6. register the pruning technique as a forward pre-hook

Before pruning During apply

"weight" is an unpruned parameter the unpruned parameter is moved to "weight_orig"

the mask is saved to a buffer called "weight_mask"

the pruned tensor is stored as an attribute called "weight"

7

torch.nn.utils.prune
Fetches the mask and the original, unpruned tensor to compute the pruned tensor

during the forward pass → op is accounted for in the backward pass, too

torch.nn.utils.prune
Makes the pruning reparametrization permanent

!= undoing pruning

After pruning During remove

the unpruned parameter is stored in "weight_orig"

the mask is stored as a buffer in "weight_mask"

the pruned tensor is stored as an attribute in "weight"

the pruned tensor is moved to a parameter called "weight"

"weight_orig" and "weight_mask"are permanently
deleted

8

torch.nn.utils.prune

torch.nn.utils.prune is designed to act on a
torch.nn.Module

provides an interface for acting directly on a tensor

9

10

Easy to extend
supports 3 PRUNING_TYPEs: 
'global', 'structured',  
and 'unstructured' (to
determine how to combine
masks if pruning is applied
iteratively)

instructions on how to
compute the mask for the
given tensor according to
the logic of your pruning
technique

torch.nn.utils.prune

Easy to use
model = LeNet() # unpruned model 

L_2 structured pruning will remove 50% of channels across axis 0
prune.ln_structured( 
 module=model.conv1,
 name="weight",
 amount=0.5,
 n=2,
 dim=0
)

Iterative pruning made easy

for _ in range(10): 
 # Remove 2 connections per iteration
 prune.l1_unstructured(module=model.fc1, name="bias", amount=2)

prune.PruningContainer handles the combination of successive masks for you

parameters_to_prune = (
 (model.conv1, "weight"),
 (model.conv2, "weight"),
 (model.fc1, "weight"),
)

prune.global_unstructured(
 parameters_to_prune,
 pruning_method=prune.L1Unstructured,
 amount=0.2,
)

Global pruning made easy

GlobalPruning

torch.nn.utils.prune.global_unstructured(...)

layer 1 layer 2 layer 3

Questions?
Contact: michela@fb.com, jessica_forde@brown.edu

12

mailto:michela@fb.com
mailto:jessica_forde@brown.edu

