Predicting Legal Proceedings Status: An approach Based on Sequential Texts

> Felipe Maia Polo¹ Itamar Ciochetti² Emerson Bertolo²

¹University of São Paulo, Brazil ²Tikal Tech, Brazil

Practical ML for Developing Countries Workshop @ ICLR 2020

(日) (同) (三) (三)

Introduction

Presentation based on:

https://arxiv.org/abs/2003.11561

э

(日) (同) (三) (三)

Introduction

- Machine learning applications in the legal field are numerous and diverse;
- Examples of applications: reviewing documents, making text-based classifications or anticipating legal outcomes;
- Natural Language Processing (NLP) tools became mainstream in the legal field due to the amount of non-structured (mainly texts) data available;

- 同 ト - ヨ ト - - ヨ ト

Introduction

- One important task is to classify legal proceedings according to their status:
 - Archived proceedings;
 - Active proceedings;
 - Suspended proceedings;
- Although there are 90 different Courts in Brazil, all legal proceedings in Brazil must be included in one of the three presented classes;
- Developing an algorithm to accomplish that task could help big public/private organizations to manage their portfolios;

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Objective

- Develop an algorithm to classify legal proceedings in three possible classes of status:
 - Archived (class 1 47.14% of sample);
 - Active (class 2 45.23% of sample);
 - Suspended (class 3 7.63% of sample);
- The three possible classes are given in a certain instant in time, which may be temporary or permanent, and are decided by the courts;
- Moreover, we will also value the *interpretability* of the results, given the importance of understanding the decisions made by models in the legal area;

Data

- Each proceeding is made up of a sequence of short texts written by the courts that we will call "motions", which relate to the current state of proceedings, but not necessarily to their status. The texts follow a chronological order;
- We use two datasets:
 - (1) A dataset of $3 \cdot 10^6$ unlabelled motions;
 - A dataset containing 6449 legal proceedings, each with an individual and variable number of motions, but which have been labeled by law experts;
- These datasets are samples from the first and third biggest State Courts, i.e. São Paulo and Rio de Janeiro;

Text preprocessing

- Uppercase to lowercase conversion: avoids the problem of over-parameterization;
- Stop words removal: removes words that bring little or no information;
- Noise removal and standardization of expressions: removes undesirable elements and standardizes expressions e.g. "state law" and "federal law" become "law";
- **Tokenization**: we used the method proposed by [MSC⁺13] in order to identify which sets of 2 to 4 words that generally appear together and which should be considered as unique tokens;

イロト イポト イラト イラト

Embedding training

- We used the unlabeled dataset to train our vector representation of tokens;
- The algorithm used for that task was the Word2Vec Continuous Bag-of-Words [MSC⁺13] with size=100 and window=5;
- We normalized the vector representations to have a unitary euclidean norm, which facilitated the interpretability of the classification model as we will soon;

- 4 同 ト 4 ヨ ト 4 ヨ ト

Legal proceeding (document) representation

- Each document in our work is represented by its last 5 texts (motions);
- Each text (motion) is represented by a real matrix of dimensions R × D, where R is the maximum number of tokens allowed for each of text and D the size of the embeddings. In our case D = 100;
- We have noticed that over 90% of the motions have a maximum of 30 tokens, so we decided to set a ceiling of R = 30 tokens, selecting the first tokens and using zero-padding when necessary;

イロト イポト イラト イラト

Neural Network Architecture

- We developed a classification model that combines a Recurrent Neural Network (RNN) with Long Short-Term Memory units (LSTM) [HS97]) with convolutional filters [Kim14];
- The convolutional filters were used to extract the features from each text and the RNN was used to take into account the chronological order of facts;
- Using the *max-over-time pooling* procedure proposed in [CWB⁺11], we kept only one feature per convolutional filter the one with the highest value. After convolution, each text is then represented by a *K* × 1 matrix, *K* being the number of filters;

Neural Network Architecture

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hyperparameters tuning

Hyperparameter	Values tested/fixed
Optimizer	Adam
Beta 1 (Adam)	0.9
Beta 2 (Adam)	0.999
Learning rate	0.005
# Epochs	50
Batch size	500
# Convolutional filters (K)	3, 5, 8, <mark>12</mark>
LSTM hidden state size (H)	10 , 30, 50, 75, 100
	.0, .0001 , .0003, .0005,
LSTM weights I1	.0007, .0009, .0011,
penalization strength (λ)	.0013, .0015, .0016,
	.0018, .002, .0025, .003
	(ロ) (空) (い)

200

æ

Classification Results Interpretability

Confusion Matrix in the test set

Classification Results Interpretability

Aggregate analysis of evaluation metrics

	Macro averaging			
Feature extraction	F1 Score	Precision	Recall	
CNN	0.89 ±0.02	0.92 ± 0.02	0.87 ±0.03	
Doc2Vec	0.82 ± 0.03	$0.85\ \pm0.03$	$0.8\ \pm0.03$	
TFIDF	0.88 ±0.02	$\textbf{0.93} \pm \textbf{0.02}$	$0.85 \ {\pm} 0.03$	

	Micro averaging			
Feature extraction	F1 Score	Precision	Recall	
CNN	$\textbf{0.93} \pm \textbf{0.01}$	$\textbf{0.93} \pm \textbf{0.01}$	$\textbf{0.93} \pm \textbf{0.01}$	
Doc2Vec	$0.85\ \pm0.01$	$0.86\ \pm0.02$	$0.85\ \pm0.02$	
TFIDF	$0.91 \ {\pm} 0.01$	$0.92\pm\!0.01$	$0.92\pm\!0.02$	

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Classification Results Interpretability

Quantity of learnable weights by approach

Feature extraction	# Learnable weights
CNN	2,153
Doc2Vec	15,813
TFIDF	243,813

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Classification Results Interpretability

Features extracted by convolutional filters

- Consider $\mathbf{f} \in \mathbb{R}^{100}$ to be a convolutional filter and $\mathbf{x} \in \mathbb{R}^{100}$ a vector representation for a specific tokem;
- If we constrain the norms of tokens and filters to be unitary, that is $\|\mathbf{f}\| = \|\mathbf{x}\| = 1$, then the convolution is a dot product and returns:

$$\mathbf{f} \cdot \mathbf{x} = \cos(\theta) \tag{1}$$

イロト イポト イラト イラト

• While learning the best weights for the convolutional layer, the network aligns the filters to those tokens that help the most in the classification task;

Classification Results Interpretability

Similarity between filters and their most similar tokens

Filters	Tokens	$\cos(\theta)$
1	final storage of docket	0.46
	final remittance to origin	0.45
	form registered in book	0.42
9	emitted	0.47
	certificate	0.43
	granted injunctions	0.42
11	temporarily stored docket	0.55
	docket remain in clerk	0.5
	return after granted period	0.45

(人間) (人) (人) (人) (人) (人)

Classification Results Interpretability

Interpretability

Classification Results Interpretability

Conclusion

- Next steps: use Transformers to create better embeddings;
- Hope you liked our work. Feel free to talk to me if you want to :)
- Stay safe and with the loved ones!
- Contacts:
 - Felipe: felipemaiapolo@gmail.com
 - Itamar: itamar@tikal.tech
 - Emerson: emerson@tikal.tech

- 4 周 ト 4 戸 ト 4 戸 ト

Bibliography I

- Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa, *Natural language processing (almost) from scratch*, Journal of Machine Learning Research **12** (2011), no. Aug, 2493–2537.
- Sepp Hochreiter and Jürgen Schmidhuber, *Long short-term memory*, Neural computation **9** (1997), no. 8, 1735–1780.
- Yoon Kim, *Convolutional neural networks for sentence classification*, arXiv preprint arXiv:1408.5882 (2014).

- 4 周 ト 4 戸 ト 4 戸 ト

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean, *Distributed representations of words and phrases and their compositionality*, Advances in neural information processing systems, 2013, pp. 3111–3119.

- 4 同 6 4 日 6 4 日 6