HyperEmbed

Tradeoffs Between Resources and Performance in NLP Tasks with Hyperdimensional Computing enabled embedding of **n**-gram statistics

 $\bullet \bullet \bullet$

Pedro Alonso*, **Kumar Shridhar***, Denis Kleyko*, Evgeny Osipov, Marcus Liwicki

PML4DC@ICLR 2020

April 2020

Luleå Technical University | BotSupply | RI.SE | University of

Main Idea

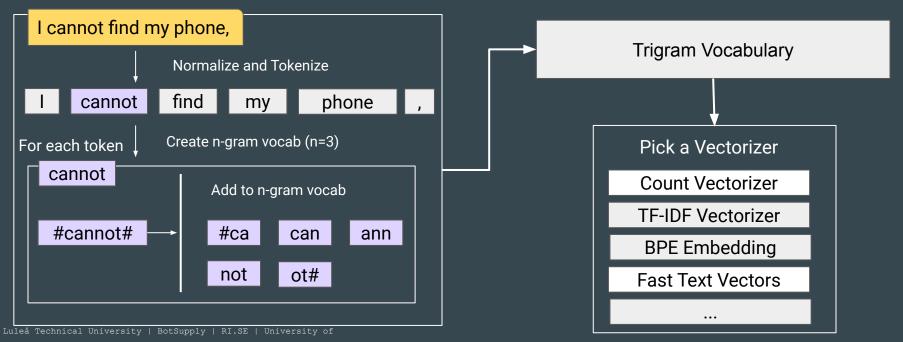
Recent advances in Deep Learning have led to a significant performance increase on several NLP tasks, however, the models become more and more computationally demanding.

This **paper** tackles the **domain of computationally efficient algorithms** for **NLP** tasks.

N-Gram Statistics



For each Sample

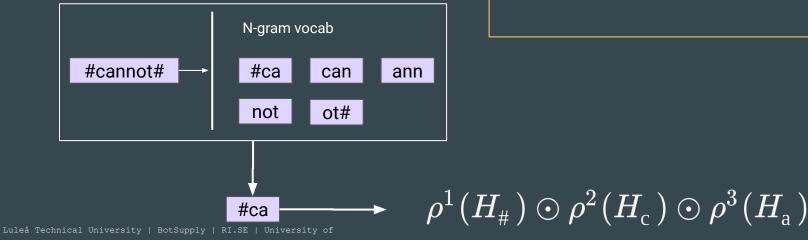


Embedding into a HD Vector

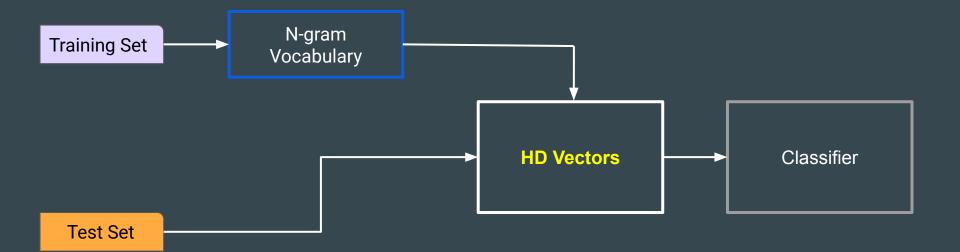
- 1. Every symbol is assigned a *d*-dimensional HD vector.
- 2. These vectors are stored in matrix **H**.
- 3. A unique HD vector for each N-gram is formed using binding and permutation operations
- 4. All observed N-gram are stored in a single HD vector using the bundling operation

Three Key operation

- Ol **Bundling +** (position wise addition)
- O2 **Binding** (position wise multiplication)
- 03 Permutation **P**



Full NLP Classification pipeline



Dataset

Small Dataset

- Ask Ubuntu
- Chatbot Corpus
- WebApplication Corpus
- : 2 Intents (50 train, 50 test samples per intent)
- : **5** Intents (10 train, 20 test samples per intent)
- : 8 intents (3 train, 7 test samples per intent)

Large Dataset

• 20 News Corpus

: 20 Intents (11,500 train, 7,500 test samples per intent)

Empirical Evaluation: ML algorithms

AskUbuntu Corpus. N=512

	F_1 score			Resources: SH vs. HD			Resources: SH vs. BPE		
Classifier	SH	BPE	HD	Tr.	Ts.	Mem.	Tr.	Ts.	Mem.
MLP	0.92	0.91	0.91	4.62	3.84	6.18	1.67	1.61	1.72
Passive Aggr.	$\bar{0.92}$	0.93	$\overline{0.90}$	4.86	3.07	6.31	$\bar{2.19}$	2.14	1.76
SGD Classifier	0.89	0.89	$\overline{0.88}$	4.66	3.50	6.31	1.94	2.16	1.76
Ridge Classifier	$\bar{0.90}^{-}$	0.91	$\overline{0.90}$	3.91	4.74	6.31	1.63	1.62	1.76
KNN Classifier	$\bar{0.79}^{-}$	0.72	$\overline{0.82}$	2.11	4.53	8.48	1.56	1.79	1.76
Nearest Centroid	0.90	0.89	$\overline{0.90}$	1.66	3.41	6.32	1.35	1.87	1.76
Linear SVC	0.90	0.92	0.90	1.18	2.39	6.29	0.91	1.91	1.76
Random Forest	0.88	0.90	0.86	0.91	1.09	6.11	1.15	0.96	1.75
Bernoulli NB	0.91	0.92	$\overline{0.85}$	2.30	3.72	6.34	1.96	2.42	1.76

On par F_1 score with huge reduction in space and time complexity.

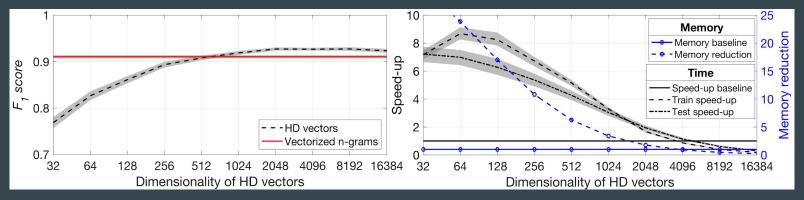
Empirical Evaluation: ML algorithms

20 News Corpus. <u>N=512</u>

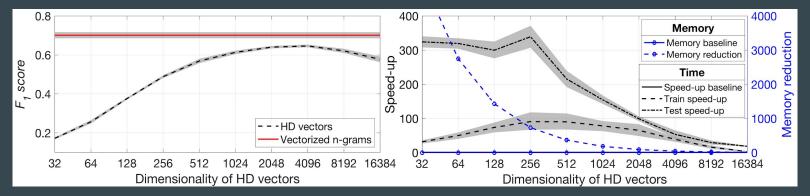
	F_1 s	core]]	Resources: SH vs. HD					
Classifier	SH	HD	Train speed-up	Test speed-up	Memory reduction				
MLP	0.72	0.64	53.23	79.50	93.19				
Passive Aggr.	$\overline{0.74}$	0.69	103.64	202.95	93.42				
SGD Classifier	0.70	0.66	105.43	186.31	93.42				
Ridge Classifier	$\overline{0.16}$	0.71	45.46	338.01	93.42				
KNN Classifier	0.31	0.31	184.47	65.87	127.54				
Nearest Centroid	0.08	0.15	212.75	254.74	93.42				
Linear SVC	0.75	0.69	5.11	176.62	93.42				
Random Forest	0.58	0.26	4.27	21.43	93.41				
Bernoulli NB	0.60	0.15	57.72	56.54	93.42				

On par F₁ score with **huge reduction** in **space** and **time** complexity.

Empirical Evaluation: HyperEmbed vs. CountVectorizer (MLP)



Chatbot Corpus



20 News Corpus

Luleå Technical University | BotSupply | RI.SE | University of

Thank You!

Paper: https://arxiv.org/abs/2003.01821

Luleå Technical University | BotSupply | RI.SE | University of