
Data Parallelism in Training Sparse Neural Networks

Namhoon Lee1, Philip Torr1, Martin Jaggi2

1University of Oxford, 2EPFL

ICLR 2020 Workshop on PML4DC

Motivation

compress

Compressing neural networks can save a large
amount of memory and computational cost.

Compressing neural networks can save a large
amount of memory and computational cost.

Network pruning is an effective methodology to
compress large neural networks.

Motivation

Han et al. 2015

Compressing neural networks can save a large
amount of memory and computational cost.

Network pruning is an effective methodology to
compress large neural networks, but typically requires
training steps (Han et al., 2015, Liu et al., 2019, Frankle et al., 2019).

Motivation

Han et al. 2015

Compressing neural networks can save a large
amount of memory and computational cost.

Network pruning is an effective methodology to
compress large neural networks, but typically requires
training steps (Han et al., 2015, Liu et al., 2019, Frankle et al., 2019).

Pruning can be done at initialization prior to training
(Lee et al., 2019, Wang et al., 2020).

Motivation

Motivation

What about training?

Compressing neural networks can save a large
amount of memory and computational cost.

Network pruning is an effective methodology to
compress large neural networks, but typically requires
training steps (Han et al., 2015, Liu et al., 2019, Frankle et al., 2019).

Pruning can be done at initialization prior to training
(Lee et al., 2019, Wang et al., 2020).

Little has been studied about the training aspects of
sparse neural networks (Evci et al., 2019, Lee et al. 2020).

Motivation

What about training?

Compressing neural networks can save a large
amount of memory and computational cost.

Network pruning is an effective methodology to
compress large neural networks, but typically requires
training steps (Han et al., 2015, Liu et al., 2019, Frankle et al., 2019).

Pruning can be done at initialization prior to training
(Lee et al., 2019, Wang et al., 2020).

Little has been studied about the training aspects of
sparse neural networks (Evci et al., 2019, Lee et al. 2020).

Our focus ⇒ Data Parallelism on Sparse Networks.

Data parallelism?

A centralized, synchronous, parallel computing system.

*It can be a higher-order derivative.

It refers to distributing training data to multiple
processors and computing gradient in parallel, so as
to accelerate training.

The amount of data parallelism is equivalent to the
batch size for optimization on a single node.

data

gradient*

Data parallelism?

A centralized, synchronous, parallel computing system.

*It can be a higher-order derivative.

It refers to distributing training data to multiple
processors and computing gradient in parallel, so as
to accelerate training.

The amount of data parallelism is equivalent to the
batch size for optimization on a single node.

Understanding the effect of batch size is crucial and
an active research topic (Hoffer et al., 2017, Smith et al., 2018,

Shallue et al., 2019).

data

gradient*

Data parallelism?

A centralized, synchronous, parallel computing system.

*It can be a higher-order derivative.

It refers to distributing training data to multiple
processors and computing gradient in parallel, so as
to accelerate training.

The amount of data parallelism is equivalent to the
batch size for optimization on a single node.

Understanding the effect of batch size is crucial and
an active research topic (Hoffer et al., 2017, Smith et al., 2018,

Shallue et al., 2019).

Sparse networks can enjoy a reduced memory and
communication cost in distributed settings.

data

gradient*

Steps-to-result
It refers to the lowest number of training steps
required to reach a goal out-of-sample error.

Steps-to-result
It refers to the lowest number of training steps
required to reach a goal out-of-sample error.

We measure steps-to-result for all combinations of
 • workload (data set, model, optimization algorithm)

 • batch size (from 1 to 16384)

 • sparsity level (from 0% to 90%)

Errors are measured on the entire validation set, at
every fixed interval during training.

Our experiments are largely motivated by and closely
follow experiments in Shallue et al., 2019.

Steps-to-result Metaparameters
They refer to parameters whose values are set before
the learning begins, such as network size for model, or
learning rate for optimization.

It refers to the lowest number of training steps
required to reach a goal out-of-sample error.

We measure steps-to-result for all combinations of
 • workload (data set, model, optimization algorithm)

 • batch size (from 1 to 16384)

 • sparsity level (from 0% to 90%)

Errors are measured on the entire validation set, at
every fixed interval during training.

Our experiments are largely motivated by and closely
follow experiments in Shallue et al., 2019.

Steps-to-result Metaparameters
They refer to parameters whose values are set before
the learning begins, such as network size for model, or
learning rate for optimization.

We tune all optimization metaparameters to avoid
any assumptions on the optimal metaparameters as a
function of batch size or sparsity level.

The optimal metaparameters are selected based on
quasi-random search that yield best performance on a
validation set.

We perform the search under a budget of trials, while
taking into account a predefined search space for
each metaparameter.

It refers to the lowest number of training steps
required to reach a goal out-of-sample error.

We measure steps-to-result for all combinations of
 • workload (data set, model, optimization algorithm)

 • batch size (from 1 to 16384)

 • sparsity level (from 0% to 90%)

Errors are measured on the entire validation set, at
every fixed interval during training.

Our experiments are largely motivated by and closely
follow experiments in Shallue et al., 2019.

Universal scaling pattern across different sparsity:

 • perfect scaling
 • diminishing returns
 • maximal data parallelism

Data parallelism in training sparse neural networks

Data parallelism in training sparse neural networks
Universal scaling pattern across different sparsity:

 • perfect scaling
 • diminishing returns
 • maximal data parallelism

Same patterns are observed for different optimizers:

 • SGD
 • Momentum
 • Nesterov

M
om

en
tu

m
S

G
D

N
es

te
ro

v

Putting different sparsity together
The higher sparsity, the longer it takes to train.
→ General difficulty of training sparse networks.

M
om

en
tu

m
S

G
D

N
es

te
ro

v

Putting different sparsity together
The higher sparsity, the longer it takes to train.
→ General difficulty of training sparse networks.

The regions of diminishing returns and maximal data
parallelism appear at a similar point.
→ The effects of data parallelism on sparse network is
comparable to the dense case.

M
om

en
tu

m
S

G
D

N
es

te
ro

v

Putting different sparsity together
The higher sparsity, the longer it takes to train.
→ General difficulty of training sparse networks.

The regions of diminishing returns and maximal data
parallelism appear at a similar point.
→ The effects of data parallelism on sparse network is
comparable to the dense case.

A bigger critical batch size is achieved with highly
sparse networks when using a momentum based SGD.
→ Resources can be used more effectively.

M
om

en
tu

m
S

G
D

N
es

te
ro

v

Continuing results

Momentum based optimizers are better at
exploiting large batch for all sparsity levels.

The data parallelism on sparse networks hold
across different workloads.

Our results on sparse networks were
unknown and is difficulty to estimate a priori.

More results can be found in the paper.
CIFAR-10, ResNet-8, Nesterov with a linear learning rate decay.

Comparing SGD, Momentum, and Nesterov optimizers.

Summary

● A universal scaling pattern for training sparse neural networks is observed across different workloads.

● Despite the general difficulty of training sparse neural networks, data parallelism on them remains no
worse than that on dense networks.

● When training using a momentum based SGD, the critical batch size is often bigger for highly sparse
networks than for dense networks.

● Our results render a positive impact on the community, by potentially helping practitioners to utilize
resources more effectively.

