Data Parallelism in Training Sparse Neural Networks

Namhoon Lee?, Philip Torr?, Martin Jaggi?
tUniversity of Oxford, 2EPFL

ICLR 2020 Workshop on PML4DC

Motivation

compress

- &P

Motivation

Efare P afler QLR Compressing neural networks can save a large
amount of memory and computational cost.

pruning __ >
synapses

Network pruning is an effective methodology to
compress large neural networks.

pruning
neurons

-—

Han et al. 2015

Motivation

Efare P afler QLR Compressing neural networks can save a large
amount of memory and computational cost.

pruning __ >
synapses

Network pruning is an effective methodology to
compress large neural networks, but typically requires
training steps (Han et al., 2015, Liu et al., 2019, Frankle et al., 2019).

pruning
neurons

-—

Train Connectivity

. 2

Prune Connections

L2

Train Weights
- / Han et al. 2015

Motivation

Published as a conference paper at ICLR 2019

Published as a conference paper at ICLR 2020

SNIP: SINGLE-SHOT NETWORK PRUNING BASED ON
CONNECTION SENSITIVITY

Namhoon Lee, Thalaiyasingam Ajanthan & Philip H. S. Torr
University of Oxford
{namhoon, ajanthan, phst}@robots.ox.ac.uk

ABSTRACT

Pruning large theis i desir-
ity. In existis pruning is
done within an iterative optimization procedure with either heuristically designed
their utility. In this
work, we preseata o i nceat
prior to training. To achieve this, we introduce a saliency criterion based on con-

for the given task. This eliminates the need for both pretraining and the complex
pruning schedule while making it robust to architecture variations. After pruning,
the sparse network is trained in the standard way. Our method obtains extremely
sparse networks with virtually the same accuracy as the reference network on the
MNIST Cl'FAR 10, and Tiny-ImageNet classification tasks and is broadly applicable
to including ional, residual and recurrent networks.

Unlike the retained

connections are indeed relevant to the given task.

PICKING WINNING TICKETS BEFORE TRAINING
BY PRESERVING GRADIENT FLOW

Chaogi Wang, Guodong Zhang, Roger Grosse
University of Toronto, Vector Institute
{cqwang, gdzhang, rgrosse}cs.toronto.edu

ABSTRACT

Overparameterization has been shown to benefit both the optimization and gen-

eralization of neural networks, but large networks are resource hungy at both
training and test time. Network pruning can reduce test-time resource require-
‘ments, but s typically applied to trained networks and therefore cannot avoid the
expensive training process. We aim to prune networks at initialization, thereby
saving resources at training time as well. Specifically, we argue that efficient
training requires preserving the gradient flow through the network. This leads
to a simple but effective pruning criterion we term Gradient Signal Preservation
(GrasP). We empirically investigate the effectiveress of the proposed method
with extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet and Im-
ageNet, using VGGNet and ResNet architectures. Our method can prune 80%
of the weights of a VGG-16 network on ImageNet at initialization, with only a
1.6% drop in top-1 accuracy. Morcover, our method achieves significantly better
performance than the baseline at extreme sparsity levels. Our code is made public
at: https://github.com/alecwangcg/Grase.

Compressing neural networks can save a large
amount of memory and computational cost.

Network pruning is an effective methodology to
compress large neural networks, but typically requires
training steps (Han et al., 2015, Liu et al., 2019, Frankle et al., 2019).

Pruning can be done at initialization prior to training
(Lee et al., 2019, Wang et al., 2020).

Motivation

Published as a conference paper at ICLR 2019

Published as a conference paper at ICLR 2020

SNIP: SINGLE-SHOT NETWORK PRUNING BASED ON
CONNECTION SENSITIVITY
Namhoon Lee, Thalaiyasingam Ajanthan & Philip H. S. Torr

University of Oxford
{namhoon, ajanthan, phst}erobots.ox.ac.uk

ABSTRACT
Pruning large ile mai theis i desir-
i ity. In existi pruningis
done within an iterative optimization p ith ei istically desi
or additi ining their utiliy. In this

work, we presenta
prior to training. To achieve this, we introduce a saliency criterion based on con-

for the given task. This eliminates the need for both pretraining and the complex
pruning schedule while making it robust to architecture variations. After pruning,
the sparse network is trained in the standard way. Our method obtains extremely

networks with virtually the same accuracy as the reference network on the
MNIST, CIFAR-10, and Tiny-] lmag:Nu classification tasks and is broadly applicable
oy residual and recurrent networks.
Unlike existing methods, the retained
connections are indeed relevant o the given task.

PICKING WINNING TICKETS BEFORE TRAINING
BY PRESERVING GRADIENT FLOW

Chaogi Wang, Guodong Zhang, Roger Grosse
University of Toronto, Vector Institute
{cqwang, gdzhang, rgrosse}cs.toronto.edu

ABSTRACT

Overparameterization has been shown to benefit both the optimization and gen-

eralization of neural networks, but large networks are resource hungy at both

training and test time. Network pruning can reduce test-time resource require-

‘ments, but s typically applied to trained networks and therefore cannot avoid the
expensive training process. We aim to prune networks at initialization, thereby
saving resources at training time as well. Specifically, we argue that efficient
training requires preserving the gradient flow through the network. This leads
to a simple but effective pruning criterion we term Gradient Signal Preservation
(GrasP). We empirically investigate the effectiveress of the proposed method
with extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet and Im-
ageNet, using VGGNet and ResNet architectures. Our method can prune 80%
of the weights of a VGG-16 network on ImageNet at initialization, with only a
1.6% drop in top-1 accuracy. Morcover, our method achieves significantly better
performance than the baseline at extreme sparsity levels. Our code is made public
at: https://github.com/alecwangcg/Grase.

What about training?

Compressing neural networks can save a large
amount of memory and computational cost.

Network pruning is an effective methodology to
compress large neural networks, but typically requires
training steps (Han et al., 2015, Liu et al., 2019, Frankle et al., 2019).

Pruning can be done at initialization prior to training
(Lee et al., 2019, Wang et al., 2020).

Little has been studied about the training aspects of
sparse neural networks (evci et al, 2019, Lee et al. 2020).

Motivation

Published as a conference paper at ICLR 2019

Published as a conference paper at ICLR 2020

SNIP: SINGLE-SHOT NETWORK PRUNING BASED ON
CONNECTION SENSITIVITY

Namhoon Lee, Thalaiyasingam Ajanthan & Philip H. S. Torr
University of Oxford
{namhoon, ajanthan, phst}@robots.ox.ac.uk

ABSTRACT

Pruning large

done within an i

work, we presenta
prior to training. To achieve this, we introduce a saliency criterion based on con-

fur the ghen task. This eliminates the need for both pretraining and the complex
...... it robust variations. After pruning,
The sparse network s trained i the standard way. Our method obiais exremely
sparse networks with virtually the same accuracy as the reference network on the
MNIST, CIFAR-10, and Tiny-] lmag:Nu classification tasks and is broadly applicable
ln residual and

ods,
connections are indeed relevant o the given task.

the retained

PICKING WINNING TICKETS BEFORE TRAINING
BY PRESERVING GRADIENT FLOW

Chaogi Wang, Guodong Zhang, Roger Grosse
University of Toronto, Vector Institute
{cqwang, gdzhang, rgrosse}cs.toronto.edu

ABSTRACT

Overparameterization has been shown to benefit both the optimization and gen-

eralization of neural networks, but large networks are resource hungy at both

training and test time. Network pruning can reduce test-time resource require-

‘ments, but s typically applied to trained networks and therefore cannot avoid the
expensive training process. We aim to prune networks at initialization, thereby
saving resources at training time as well. Specifically, we argue that efficient
training requires preserving the gradient flow through the network. This leads
to a simple but effective pruning criterion we term Gradient Signal Preservation
(GrasP). We empirically investigate the effectiveress of the proposed method
with extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet and Im-
ageNet, using VGGNet and ResNet architectures. Our method can prune 80%
of the weights of a VGG-16 network on ImageNet at initialization, with only a
1.6% drop in top-1 accuracy. Moreover, our method achieves significantly better
performance than the baseline at extreme sparsity levels. Our code is made public
at: https://github.com/alecwangcg/Grase.

What about training?

Compressing neural networks can save a large
amount of memory and computational cost.

Network pruning is an effective methodology to
compress large neural networks, but typically requires
training steps (Han et al., 2015, Liu et al., 2019, Frankle et al., 2019).

Pruning can be done at initialization prior to training
(Lee et al., 2019, Wang et al., 2020).

Little has been studied about the training aspects of
sparse neural networks (evci et al, 2019, Lee et al. 2020).

Our focus = Data Parallelism on Sparse Networks.

Data parallelism?

A centralized, synchronous, parallel computing system.

It can be a higher-order derivative.

It refers to distributing training data to multiple
processors and computing gradient in parallel, so as
to accelerate training.

The amount of data parallelism is equivalent to the
batch size for optimization on a single node.

Data parallelism?

A centralized, synchronous, parallel computing system.

“It can be a higher-order derivative.

It refers to distributing training data to multiple
processors and computing gradient in parallel, so as
to accelerate training.

The amount of data parallelism is equivalent to the
batch size for optimization on a single node.

Understanding the effect of batch size is crucial and
an active research topic (Hoffer et al, 2017, Smith et al., 2018,
Shallue et al., 2019).

Data parallelism?

A centralized, synchronous, parallel computing system.

“It can be a higher-order derivative.

It refers to distributing training data to multiple
processors and computing gradient in parallel, so as
to accelerate training.

The amount of data parallelism is equivalent to the
batch size for optimization on a single node.

Understanding the effect of batch size is crucial and
an active research topic (Hoffer et al, 2017, Smith et al., 2018,
Shallue et al., 2019).

Sparse networks can enjoy a reduced memory and
communication cost in distributed settings.

Steps-to-result

It refers to the lowest number of training steps
required to reach a goal out-of-sample error.

Steps-to-result

It refers to the lowest number of training steps
required to reach a goal out-of-sample error.

We measure steps-to-result for all combinations of
e workload (data set, model, optimization algorithm)
 batch size (from 1 to 16384)

e sparsity level (from 0% to 90%)

Errors are measured on the entire validation set, at
every fixed interval during training.

Our experiments are largely motivated by and closely
follow experiments in Shallue et al., 2019.

Steps-to-result Metaparameters

It refers to the lowest number of training steps They refer to parameters whose values are set before
required to reach a goal out-of-sample error. the learning begins, such as network size for model, or

learning rate for optimization.
We measure steps-to-result for all combinations of

e workload (data set, model, optimization algorithm)
 batch size (from 1 to 16384)
e sparsity level (from 0% to 90%)

Errors are measured on the entire validation set, at
every fixed interval during training.

Our experiments are largely motivated by and closely
follow experiments in Shallue et al., 2019.

Steps-to-result

It refers to the lowest number of training steps
required to reach a goal out-of-sample error.

We measure steps-to-result for all combinations of
e workload (data set, model, optimization algorithm)
 batch size (from 1 to 16384)

e sparsity level (from 0% to 90%)

Errors are measured on the entire validation set, at
every fixed interval during training.

Our experiments are largely motivated by and closely
follow experiments in Shallue et al., 2019.

Metaparameters

They refer to parameters whose values are set before
the learning begins, such as network size for model, or
learning rate for optimization.

We tune all optimization metaparameters to avoid
any assumptions on the optimal metaparameters as a
function of batch size or sparsity level.

The optimal metaparameters are selected based on
quasi-random search that yield best performance on a
validation set.

We perform the search under a budget of trials, while
taking into account a predefined search space for
each metaparameter.

Data parallelism in training sparse neural networks

Steps

Sparsity: 0%

Sparsity: 50%

Sparsity: 70%

Sparsity: 90%

o1
210
29| N

Q13
ptt

29 R,

7

21
ou

22 S

i N

o1
21 S
210 5

8l |

SRR e < I B ‘Y*M " "
N a N aQ [=3
& 2 AN 2 <
2] 12 12
27 21 21 2!
Batch Batch Batch Batch

Universal scaling pattern across different sparsity:

e perfect scaling

e maximal data parallelism

SGD
Steps

Momentum

Nesterov

Data parallelism in training sparse neural networks

Steps

Sparsity: 0%

Sparsity: 50%

Sparsity: 70%

Sparsity: 90%

Steps

2 2 i
Batch size

ST 5T

Sparsity: 0%

2

35 27 39 3 313

Batch size

Sparsity: 50%

2% 2% 22 @l 22 2k 21

Batch size

Sparsity: 70%

. 2 2 2 2
Batch size

PLYE

Sparsity: 90%

>3

25 2f 2f
Batch size

ST 313

Sparsity: 0%

T

33

2 @ R
Batch size

ST 313

Sparsity: 50%

@&* ¥ X 2‘7 2
Batch size

2T 35

Sparsity: 70%

8 PR X
Batch size

PN

Sparsity: 90%

37

35 2T 29 2T 313

Batch size

37

2T 3T 0 3T %
Batch size

2y 2 22 2 28
Batch size

ST 313

T 37 35 2T 29 2T 313

Batch size

Universal scaling pattern across different sparsity:

e perfect scaling

e maximal data parallelism

Same patterns are observed for different optimizers:

* SGD
e Momentum
e Nesterov

Putt

ing different sparsi

Momentum SGD

Nesterov

All sparsities All sparsities (normalized)
2 e~ sparsity: 0% 2 o~ sparsity: 0%
~— sparsity: 50% —&— sparsity: 50%
213, >~ sparsity: 70% P %~ sparsity: 70%
—4— sparsity: 90% sparsity: 90%
12
w ’ w 22
Q21 Q
2 fp
& 10 o
2 2
28 25
27
PR SR U] D R T R T Y
Batch size Batch size
All sparsities All sparsities (normalized)
~e— sparsity: 0% 20 ~o— sparsity: 0%
21 4 sparsity: 50% 4 sparsity: 50%
" % sparsity: 70% 27 % sparsity: 70%
2 sparsity: 90% —4— sparsity: 90%
12 272
gon g2
2 g,
2] 12
2° 2-5
28 2-6
7
2 551
T T T 3 i 3l T 5 T 35 3m 3
Batch size Batch size
All sparsities All sparsities (normalized)
e —e sparsity: 0% 20 —e sparsity: 0%
4 sparsity: 50% - sparsity: 50%
213, — sparsity: 70% 2715\ - sparsity: 70%
—4— sparsity: 90% 4 sparsity: 90%
o1 2-2
gon 82
< g
a o
2
20 2>
2-6

2t 22

PR U S T
Batch size

T T 2 o 3T
Batch size

ty together

The higher sparsity, the longer it takes to train.
— General difficulty of training sparse networks.

Putting different sparsity together

All sparsities All sparsities (normalized)
" | s The higher sparsity, the longer it takes to train.
S gi: g — General difficulty of training sparse networks.
B G 727
e e The regions of diminishing returns and maximal data
All sparsities All sparsities (normalized)

—e— sparsity: 0%

=T parallelism appear at a similar point.
g = S - ‘
2 .= — The effects of data parallelism on sparse network is
g " comparable to the dense case.
@] 2
=

T T T 3 i 3l
Batch size Batch size

All sparsities All sparsities (normalized)
e —e sparsity: 0% 20 —e sparsity: 0%
4~ sparsity: 50% \ 4~ sparsity: 50%
o1 < sparsity: 70% 271 - sparsity: 70%
> \ —4— sparsity: 90%
o 21 22
‘G_) Qom 82
-— o 9
(] n2° PSS
[} 2
2-5
zZ 2
27 27
2 PEE e 2 PEEC T

PERP U PR
Batch size Batch size

Putting different sparsity together

All sparsities All sparsities (normalized)
" | e The higher sparsity, the longer it takes to train.
S g.,i: g — General difficulty of training sparse networks.
B G
e e The regions of diminishing returns and maximal data
All sparsities All sparsities (normalized) o . . .
e S Ton. parallelism appear at a similar point.
= S — The effects of data parallelism on sparse network is

comparable to the dense case.

Momentum
Steps

28
27
T T T 3 i 3l oT

Batch size Batch size

All sparsities All sparsities (normalized)

S f e A bigger critical batch size is achieved with highly

z u === R Zhs sparse networks when using a momentum based SGD.
[0) 21 82 .

g & g, — Resources can be used more effectively.

pz4 2 N

PERP U PR
Batch size Batch size

Continuing results

Sparsity: 0% Sparsity: 50% Sparsity: 70% Sparsity: 90%
- SGD 1 —8— SGD

—4— Momentum —4— Momentum
—¢ Nesterov —¢ Nesterov

Momentum based optimizers are better at
exploiting large batch for all sparsity levels.

The data parallelism on sparse networks hold
across different workloads.

T 5 T 3T o 3 T T 5 T 3 ST 3D T 3T 5 T o7 T 33 D B R v)
Batch size Batch size Batch size Batch size

Comparing SGD, Momentum, and Nesterov optimizers.

Sparsity: 0% Sparsity: 90% All sparsities All sparsities (normalized)

—o— sparsity: 0% —o— sparsity: 0%
Q13| 2151 —4— sparsity: 90%
ul
N
2°F N
N
N

= Our results on sparse networks were
unknown and is difficulty to estimate a priori.

2
2
0 0
& o2
& ok]
g
25k 3 25k
23 AN N
~ 2 ~ 2 \71/‘
ST T E ol T o ST T 3 E ol T o i S ST T or 3F 3l S .
Batch size Batch size Batch size Batch size M O re resu l_ts Ca n be fou n d | n the pa pe r.

CIFAR-10, ResNet-8, Nesterov with a linear learning rate decay.

Summary

e Auniversal scaling pattern for training sparse neural networks is observed across different workloads.

e Despite the general difficulty of training sparse neural networks, data parallelism on them remains no
worse than that on dense networks.

e When training using a momentum based SGD, the critical batch size is often bigger for highly sparse
networks than for dense networks.

e Qur results render a positive impact on the community, by potentially helping practitioners to utilize
resources more effectively.

