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What about training?

Compressing neural networks can save a large 
amount of memory and computational cost.

Network pruning is an effective methodology to 
compress large neural networks, but typically requires 
training steps (Han et al., 2015, Liu et al., 2019, Frankle et al., 2019).

Pruning can be done at initialization prior to training 
(Lee et al., 2019, Wang et al., 2020).

Little has been studied about the training aspects of 
sparse neural networks (Evci et al., 2019, Lee et al. 2020).

Our focus  ⇒  Data Parallelism on Sparse Networks.
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Data parallelism?

A centralized, synchronous, parallel computing system.

*It can be a higher-order derivative.

It refers to distributing training data to multiple 
processors and computing gradient in parallel, so as 
to accelerate training.

The amount of data parallelism is equivalent to the 
batch size for optimization on a single node.

Understanding the effect of batch size is crucial and 
an active research topic (Hoffer et al., 2017, Smith et al., 2018, 

Shallue et al., 2019).

Sparse networks can enjoy a reduced memory and 
communication cost in distributed settings.
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Data parallelism in training sparse neural networks
Universal scaling pattern across different sparsity:

    • perfect scaling
    • diminishing returns
    • maximal data parallelism

Same patterns are observed for different optimizers:

    • SGD
    • Momentum
    • Nesterov
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comparable to the dense case.

M
om

en
tu

m
S

G
D

N
es

te
ro

v



Putting different sparsity together
The higher sparsity, the longer it takes to train.
→ General difficulty of training sparse networks.

The regions of diminishing returns and maximal data 
parallelism appear at a similar point.
→ The effects of data parallelism on sparse network is 
comparable to the dense case.

A bigger critical batch size is achieved with highly 
sparse networks when using a momentum based SGD.
→ Resources can be used more effectively.
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Continuing results

Momentum based optimizers are better at 
exploiting large batch for all sparsity levels.

The data parallelism on sparse networks hold 
across different workloads.

Our results on sparse networks were 
unknown and is difficulty to estimate a priori.

More results can be found in the paper.
CIFAR-10, ResNet-8, Nesterov with a linear learning rate decay.

Comparing SGD, Momentum, and Nesterov optimizers.



Summary

● A universal scaling pattern for training sparse neural networks is observed across different workloads.

● Despite the general difficulty of training sparse neural networks, data parallelism on them remains no 
worse than that on dense networks.

● When training using a momentum based SGD, the critical batch size is often bigger for highly sparse 
networks than for dense networks.

● Our results render a positive impact on the community, by potentially helping practitioners to utilize 
resources more effectively.


