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ABSTRACT

Pruning large theis i desir-
ity. In existis pruning is
done within an iterative optimization procedure with either heuristically designed
their utility. In this
work, we preseata o i nceat
prior to training. To achieve this, we introduce a saliency criterion based on con-

for the given task. This eliminates the need for both pretraining and the complex
pruning schedule while making it robust to architecture variations. After pruning,
the sparse network is trained in the standard way. Our method obtains extremely
sparse networks with virtually the same accuracy as the reference network on the
MNIST Cl'FAR 10, and Tiny-ImageNet classification tasks and is broadly applicable
to including ional, residual and recurrent networks.
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ABSTRACT

Overparameterization has been shown to benefit both the optimization and gen-

eralization of neural networks, but large networks are resource hungy at both
training and test time. Network pruning can reduce test-time resource require-
‘ments, but s typically applied to trained networks and therefore cannot avoid the
expensive training process. We aim to prune networks at initialization, thereby
saving resources at training time as well. Specifically, we argue that efficient
training requires preserving the gradient flow through the network. This leads
to a simple but effective pruning criterion we term Gradient Signal Preservation
(GrasP). We empirically investigate the effectiveress of the proposed method
with extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet and Im-
ageNet, using VGGNet and ResNet architectures. Our method can prune 80%
of the weights of a VGG-16 network on ImageNet at initialization, with only a
1.6% drop in top-1 accuracy. Morcover, our method achieves significantly better
performance than the baseline at extreme sparsity levels. Our code is made public
at: https://github.com/alecwangcg/Grase.

Compressing neural networks can save a large
amount of memory and computational cost.

Network pruning is an effective methodology to
compress large neural networks, but typically requires
training steps (Han et al., 2015, Liu et al., 2019, Frankle et al., 2019).

Pruning can be done at initialization prior to training
(Lee et al., 2019, Wang et al., 2020).
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expensive training process. We aim to prune networks at initialization, thereby
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(GrasP). We empirically investigate the effectiveress of the proposed method
with extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet and Im-
ageNet, using VGGNet and ResNet architectures. Our method can prune 80%
of the weights of a VGG-16 network on ImageNet at initialization, with only a
1.6% drop in top-1 accuracy. Moreover, our method achieves significantly better
performance than the baseline at extreme sparsity levels. Our code is made public
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What about training?

Compressing neural networks can save a large
amount of memory and computational cost.

Network pruning is an effective methodology to
compress large neural networks, but typically requires
training steps (Han et al., 2015, Liu et al., 2019, Frankle et al., 2019).

Pruning can be done at initialization prior to training
(Lee et al., 2019, Wang et al., 2020).

Little has been studied about the training aspects of
sparse neural networks (evci et al, 2019, Lee et al. 2020).

Our focus = Data Parallelism on Sparse Networks.
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A centralized, synchronous, parallel computing system.

“It can be a higher-order derivative.

It refers to distributing training data to multiple
processors and computing gradient in parallel, so as
to accelerate training.

The amount of data parallelism is equivalent to the
batch size for optimization on a single node.

Understanding the effect of batch size is crucial and
an active research topic (Hoffer et al, 2017, Smith et al., 2018,
Shallue et al., 2019).

Sparse networks can enjoy a reduced memory and
communication cost in distributed settings.
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It refers to the lowest number of training steps
required to reach a goal out-of-sample error.

We measure steps-to-result for all combinations of
e workload (data set, model, optimization algorithm)
 batch size (from 1 to 16384)

e sparsity level (from 0% to 90%)

Errors are measured on the entire validation set, at
every fixed interval during training.

Our experiments are largely motivated by and closely
follow experiments in Shallue et al., 2019.

Metaparameters

They refer to parameters whose values are set before
the learning begins, such as network size for model, or
learning rate for optimization.

We tune all optimization metaparameters to avoid
any assumptions on the optimal metaparameters as a
function of batch size or sparsity level.

The optimal metaparameters are selected based on
quasi-random search that yield best performance on a
validation set.

We perform the search under a budget of trials, while
taking into account a predefined search space for
each metaparameter.
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Same patterns are observed for different optimizers:

* SGD
e Momentum
e Nesterov
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Continuing results
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Momentum based optimizers are better at
exploiting large batch for all sparsity levels.

The data parallelism on sparse networks hold
across different workloads.
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Summary

e Auniversal scaling pattern for training sparse neural networks is observed across different workloads.

e Despite the general difficulty of training sparse neural networks, data parallelism on them remains no
worse than that on dense networks.

e When training using a momentum based SGD, the critical batch size is often bigger for highly sparse
networks than for dense networks.

e Qur results render a positive impact on the community, by potentially helping practitioners to utilize
resources more effectively.



