CLASS AGNOSTIC OBJECT SEGMENTATION
with FEW-SHOT WEAKLY SUPERVISED
GUIDANCE

Mennatullah Siam*, Naren Doraiswamuy?,
Boris Oreshkin*, Hengshuai Yao, Martin Jagersand




o INtroduction

Few-Shot Learning impact on Developing Countries

<> Developing countries suffer from limited computational resources and labelled
datasets.

Potential Applications: cerial images segmentation - perception for robot manipulation

Few-Shot Segmentation with Image-level Labels

Can use publicly available web data.

Literature mainly focused on pixel level labels and bounding boxes, with only
one recent approach (Raza et. al.[1]) on image-level.

[1] Hasnain Raza, Mahdyar Ravanbakhsh, Tassilo Klein, and Moin Nabi. Weakly supervised one shot segmentation. In
Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 0-0, 2019




Class Agnostic Segmentation with
Few-shot Guidance

Setup: Following Shaban et al. setup 1-way k-shot segmentation,

Where goal is to segment 1 class against background

Using k images as few training data s i
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Few-Shot Object Segmentation with Image-Level Supervision
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TOSFL: Temporal Object
Segmentation for Few-shot Learning

Problem: Binary segmentation of Query Images from a video
sequence based on provided support set image-label pair, label is
only image-level label.

Setup: Instance-level / Cotegorg level, query set is sampled from @
video sequence

Motivation: Instance Level Category Level
1 Pixels that move together belong to the same object

2) Predicted Masked Embeddings are expected to be
temporally consistent.



Experimental Results
Ablation Studies:

1) Pascal-5i
Coattention Semantic mloU
X X 42.7
v X 44.6
v v 51.0

2) Youtube-VOS

Coattention Semantic + Visual mioU
X v 42.3

v v 43.7



Experimental Results
Ablation Studies:

Bicycle & -
1) Pascal-5i -
Coattention Semantic mloU g
X X 42.7 Bicycle ¢ ¢
v X 44.6
v v 51.0
2) Youtube-VOS Plane |
Coattention Semantic + Visual mloU
X v 42.3 Bird
v v 43.7

Support Image V-Coatt V+S-Coatt



Variants:

1) Pascal-5i

2) Youtube-VOS

Method
V-CoAtt
S-Cond

V+S-Coatt

Method
V-CoAtt
S-Cond

V+S-Coatt

Experimental Results

1-shot 5-shot
444 +0.3 49.1+0.3
51.2+0.6 514+0.3
50.5+0.7 51.7 £ 0.07

Category-Level Instance Level

36.1 38.0+0.7
37.7 41.7 £ 0.7
37.6 43.8 £ 0.5
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Experimental Results

Comparison to SOA

Method Type 1-shot 5-shot
mloU bloU mloU
FG-BG P - 55.1 -
OSLSM (Shaban et. al. 2017) P 40.8 - 43.9
CoFCN (Rakelly et. al. 2018) P 41.1 60.1 41.4
PLSeg ( Dong et. al. 2018) P - 61.2 -
AMP (Siam et. al. 2019) P 43.4 62.2 46.9
PGNet (Zang et. al. 2019) P 56.0 69.9 58.5
Ours IL 50.5 64.1 51.7
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Experimental Results

Comparison to SOA

Method Type 5-shot
mloU bloU mloU
PANet (Wang et. al 2019) P 48.1 66.5 55.7
CANet (Zang et. al. 2019) P 554 66.2 571
CANet (Zang et. al. 2019) BB 52.0 - -
PANet (Wang et. al 2019) BB 45.1 - 52.8
(Raza et. al. 2019) IL - 58.7 -
Ours - V1 IL 53.5 65.6 -
Ours - V2 IL 50.5 64.1 51.7



Semantic features + Co-attention
Few-shot Image-level Guidance

Novel TOSFL Setup
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