CLASS AGNOSTIC OBJECT SEGMENTATION with FEW-SHOT WEAKLY SUPERVISED GUIDANCE

Mennatullah Siam*, Naren Doraiswamy*, Boris Oreshkin*, Hengshuai Yao, Martin Jagersand

Introduction

Few-Shot Learning impact on Developing Countries

Developing countries suffer from **limited computational resources and labelled datasets**.

Potential Applications: aerial images segmentation - perception for robot manipulation

Few-Shot Segmentation with Image-level Labels

Can use publicly available **web data**.

Literature mainly focused on **pixel level labels** and **bounding boxes**, with only one recent approach (**Raza et. al.[1]**) on **image-leve**l.

[1] Hasnain Raza, Mahdyar Ravanbakhsh, Tassilo Klein, and Moin Nabi. Weakly supervised one shot segmentation. In Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 0–0, 2019

Setup: Following Shaban et al. setup 1-way k-shot segmentation,

Where goal is to segment 1 class against background

Using k images as few training data

Contributions:

- Investigate co-attention mechanisms and conditioning on semantic features in learning **few-shot segmentation with image-level supervision**.
 - Temporal Object segmentation for few-shot learning novel setup.
 - Comparative study of different variants.

Semantic

TOSFL: Temporal Object Segmentation for Few-shot Learning

Problem: Binary segmentation of Query Images from a video sequence based on provided support set image-label pair, label is only **image-level label**.

Setup: Instance-level / Category-level, query set is sampled from a

video sequence

Motivation:

Instance Level

Category Level

1) Pixels that move together belong to the same object

2) Predicted Masked Embeddings are expected to be temporally consistent.

Ablation Studies:

1) Pascal-5i

Coattention	Semantic	mloU	
×	×	42.7	
✓	×	44.6	
 Image: A start of the start of	✓	51.0	

2) Youtube-VOS

Coattention	Semantic + Visual	mloU	
×	✓	42.3	
✓	✓	43.7	

Ablation Studies:

1) Pascal-5i

Coattention	Semantic	mloU	
×	×	42.7	
1	×	44.6	
✓	\checkmark	51.0	

2) Youtube-VOS

Coattention	Semantic + Visual	mloU	
×	✓	42.3	Bird
1	\checkmark	43.7	

Bicycle Bicycle Plane

Support Image V-Coatt V+S-Coatt

Variants:

1) Pascal-5i

Method	1-shot	5-shot	
V-CoAtt	44.4 ± 0.3	49.1 ± 0.3	
S-Cond	51.2 ± 0.6	51.4 ± 0.3	
V+S-Coatt	50.5 ± 0.7	51.7 ± 0.07	

	Method	Category-Level	Instance Level
2) Youtube-VOS	V-CoAtt	36.1	38.0 ± 0.7
	S-Cond	37.7	41.7 ± 0.7
	V+S-Coatt	37.6	43.8 ± 0.5

Comparison to SOA

20 20

S

	Method	Туре	1-shot		5-shot
			mloU	bloU	mloU
	FG-BG	Р	-	55.1	-
)	OSLSM (Shaban et. al. 2017)	Р	40.8	-	43.9
	CoFCN (Rakelly et. al. 2018)	Р	41.1	60.1	41.4
	PLSeg (Dong et. al. 2018)	Р	-	61.2	-
	AMP (Siam et. al. 2019)	Р	43.4	62.2	46.9
	PGNet (Zang et. al. 2019)	Р	56.0	69.9	58.5
	Ours	IL	50.5	64.1	51.7

Comparison to SOA

R

Method	Туре	1-shot		5-shot
		mloU	bloU	mloU
PANet (Wang et. al 2019)	Р	48.1	66.5	55.7
CANet (Zang et. al. 2019)	Р	55.4	66.2	57.1
CANet (Zang et. al. 2019)	BB	52.0	-	-
PANet (Wang et. al 2019)	BB	45.1	-	52.8
(Raza et. al. 2019)	IL	-	58.7	-
Ours - V1	IL	53.5	65.6	-
Ours - V2	IL	50.5	64.1	51.7

