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*This is a subset of work from our ICLR 2020 Paper. Code is also available!
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computationally 
expensive

● Active learning is a powerful data selection technique to reduce labeling costs, 
but can be computationally expensive.
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● Active learning is a powerful data selection technique to reduce labeling costs, 
but can be computationally expensive.

● Small, less accurate models can serve as inexpensive proxies and accelerate 
data selection in active learning by up to 41.9x!

Reach the 
same accuracy!
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Active Learning Data Selection Speed-up

Budget: 10% 20% 30% 40% 50%

Dataset Selection Model Epochs

CIFAR10 ResNet164 (Baseline) 181 1.0x 1.0x 1.0x 1.0x 1.0x
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● Traditional active learning with ResNet164 is accurate but slow.
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● Traditional active learning with ResNet20 is less accurate than ResNet164 but much 
faster.
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● Can we get the speed of ResNet20 and the final accuracy of ResNet164?
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● Can we get the speed of ResNet20 and the final accuracy of ResNet164? Yes!
Using the data selected by ResNet20 to train ResNet164, yields up to a 7.0x 
speed-up without any loss in the final accuracy of ResNet164.
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Active Learning Data Selection Speed-up

Budget: 10% 20% 30% 40% 50%

Dataset Selection Model Epochs

CIFAR10 ResNet164 (Baseline) 181 1.0x 1.0x 1.0x 1.0x 1.0x

ResNet20 181 3.8x 5.8x 6.7x 7.0x 7.2x

ResNet20 50 10.7x 18.9x 22.2x 23.9x 25.0x

● Training ResNet20 for fewer epochs before selecting points is within 1% of the 
accuracy of the baseline approach but up to 25x faster.
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● Selection via proxy yields similar results for much larger and more complex 
datasets like ImageNet
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● Selection via proxy yields similar results for much larger and more complex datasets 
like ImageNet, where there is a high ranking correlation across many models.
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Amazon Review 
Polarity

VDCNN29 (Baseline) 15 1.0x 1.0x 1.0x 1.0x 1.0x

fastText 10 10.6x 20.6x 32.2x 41.9x 51.3x

● By using an extremely fast proxy architecture, we achieve up to a 41.9x speed-up.
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Amazon Review 
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Conclusion: Selection via Proxy (SVP) improves the computational efficiency of active 
learning by substituting a cheap proxy model for a more accurate, but expensive model.
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