Learning with less resources:

minimizing the labeling effort

Negar Rostamzadeh

ICLR 2020 workshop on Practical ML for Developing Countries: learning under limited/low resource scenarios

Deep Learning and challenges

ImageNet, Russakovsky et al, 2014

Deep Learning approaches work well with large number of labeled data and good computational power.

Data annotation challenges-Video understanding

Two-Stream Convolutional Networks in Videos, Simonyan and Zisserman

Learning Spatiotemporal Features with 3D

Convolutional Networks, Tran et al.

(c) shaking hands

(e) robot dancing

Kinetic dataset, Key et al.

AVA: A Video Dataset, Gu et al.

Research question: How can we minimize the labeling effort and still have a good performance?

Data annotation challengessemantic and instance segmentation

Input Image

Semantic Segmentation

Instance Segmentation

In average 1.5 hour to annotate each image

"The Cityscapes Dataset" M. Cordts et al. CVPR, 2016

Challenges with scarcity of data

Long tail of data

Type of classes and data

We have access to multiple sources of data

Long sleeve blazer in deep navy. Notched lapel collar. Padded shoul closure at front. Welt pocket at breast. Flap pockets at waist. Four-b cuffs. Two vents at back. Partial lining. Tonal stitching.

Text

Videos (Visual/Audio) and text

Visual/Text

Research question: How can we reduce the labeling effort while, maintaining a good performance?

- Q1: Can we have cheaper and easier annotations and still have a competitive performance?
 - 1. Where are the blobs: Counting by localization with point supervision, Laradji et all, ECCV 2018
 - 2. Instance Segmentation with Point Supervision, Laradji et al, arXiv:1906.06392

Research question: How can we reduce the labeling effort while, maintaining a good performance?

- Q1: Can we have cheaper and easier annotations and still have a competitive performance?
 - 1. Where are the blobs: Counting by localization with point supervision, Laradji et all, ECCV 2018
 - 2. Instance Segmentation with Point Supervision, Laradji et al, arXiv:1906.06392
- Q2: How to exploit the data from a cheaper to annotate domain?

Domain-Adaptive single-view 3D reconstruction, Pinheiro et al, ICCV 2019

Research question: How can we reduce the labeling effort while, maintaining a good performance?

- Q1: Can we have cheaper and easier annotations and still have a competitive performance?
 - 1. Where are the blobs: Counting by localization with point supervision, Laradji et all, ECCV 2018
 - 2. Instance Segmentation with Point Supervision, Laradji et al, arXiv:1906.06392
- Q2: How to exploit the data from a cheaper to annotate domain?

Domain-Adaptive single-view 3D reconstruction, Pinheiro et al, ICCV 2019

- Q3: How to exploit multiple source of data to solve a problem?
 - 1. Adaptive cross-modal few-shot learning, Xing et al, NeurIPS 2019
 - 2. Neural Multisensory Scene Inference, Lim et al, NeurIPS 2019

Can we have cheaper and easier annotations?

Point-level annotation

Where are the blobs: Counting by localization with point supervision,

Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, ECCV 2018

Input image

Point-level annotated image

5 ships 1 dog 1 person

Output: object instance count

Point-level annotation

Where are the blobs: Counting by localization with point supervision,

Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, ECCV 2018

Input image

Point-level annotated image

5 ships 1 dog 1 person

Output: object instance count

Instance Segmentation with Point Supervision,

Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, *arXiv:* 1906.0639

Input image

Point-level annotated image

Output: instance segmentation

Images source: Microsoft COCO: Common Objects in Context, Lin et al.

Segmentation network- FCN

Backbone (ResNet)

Upsampling path

Blob predictions

- Semantic segmentation network [1]
- The count is the number of predicted blobs
- Trained to output exactly one blob per each object instance

[1] What's the Point: Semantic Segmentation with Point Supervision, Bearman et al, ECCV 2016

Image-level Loss

Discourage predicting classes not present in the annotations

$$L(S,T) = -\frac{1}{|C_e|} \sum_{c \in C_e} \log(S_{t_c c}) - \frac{1}{|C_{\neg e}|} \sum_{c \in C_{\neg e}} \log(1 - S_{t_c c})$$

S: Output mask the model

T: Ground-truth

Image-level Loss

Discourage predicting classes not present in the annotations

Point-level Loss

Encourage predicting the classes of the annotated pixels

$$L(S,T) = -\frac{1}{|C_e|} \sum_{c \in C_e} \log(S_{t_c c}) - \frac{1}{|C_{\neg e}|} \sum_{c \in C_{\neg e}} \log(1 - S_{t_c c}) - \sum_{i \in \mathcal{I}_s} \log(S_{i T_i})$$

S: Output mask the model

T: Ground-truth

Point-level segmentation loss [1]

Image-level Loss

Discourage predicting classes not present in the annotations

Point-level Loss

Encourage predicting the classes of the annotated pixels

$$L(S,T) = -\frac{1}{|C_e|} \sum_{c \in C_e} \log(S_{t_c c}) - \frac{1}{|C_{\neg e}|} \sum_{c \in C_{\neg e}} \log(1 - S_{t_c c}) - \sum_{i \in \mathcal{I}_s} \log(S_{i T_i})$$

S: Output mask the model

T: Ground-truth

[1] What's the Point: Semantic Segmentation with Point Supervision, Bearman et al, ECCV 2016

Point-level segmentation loss [1]

Image-level Loss

Discourage predicting classes not present in the annotations

Point-level Loss

Encourage predicting the classes of the annotated pixels

Split-level Loss

discourages the prediction of blobs that have two or more point-annotations

False positive Loss

Discourage predicting blobs without point-annotations

$$L(S,T) = -\frac{1}{|C_e|} \sum_{c \in C_e} \log(S_{t_c c}) - \frac{1}{|C_{\neg e}|} \sum_{c \in C_{\neg e}} \log(1 - S_{t_c c}) - \sum_{i \in \mathcal{I}_s} \log(S_{i T_i}) - \sum_{i \in T_b} \alpha_i \log(S_{i 0}) - \sum_{i \in B_{fp}} \log(S_{i 0})$$

S: Output mask the model

T: Ground-truth

 $lpha_i$: Number of point-annotations in the blob in which pixel i lies

[1] What's the Point: Semantic Segmentation with Point Supervision, Bearman et al, ECCV 2016

LCFCN: Analyzing loss terms - Qualitative results

	MIT	Fraffic	PK	${f Lot}$	Trai	ncos	Peng Sepa	guins rated
Method	MAE	\mathbf{FS}	MAE	\mathbf{FS}	MAE	\mathbf{FS}	MAE	FS
Glance	1.57	-	1.92	-	7.01	-	6.09	-
$\mathcal{L}_I + \mathcal{L}_P$	3.11	0.38	39.62	0.04	38.56	0.05	9.81	0.08
$\overline{\mathcal{L}_I + \mathcal{L}_P + \mathcal{L}_S}$	1.62	0.76	9.06	0.83	6.76	0.56	4.92	0.53
$\mathcal{L}_I + \mathcal{L}_P + \mathcal{L}_F$	1.84	0.69	39.60	0.04	38.26	0.05	7.28	0.04
LC-ResFCN	1.26	0.81	10.16	0.84	3.32	0.68	3.96	0.63
LC-FCN8	0.91	0.69	0.21	0.99	4.53	0.54	3.74	0.61

$$\mathcal{L}(S,T) = \underbrace{\mathcal{L}_I(S,T)}_{\text{Image-level loss}} + \underbrace{\mathcal{L}_P(S,T)}_{\text{Point-level loss}} + \underbrace{\mathcal{L}_S(S,T)}_{\text{Split-level loss}} + \underbrace{\mathcal{L}_F(S,T)}_{\text{False positive loss}}$$

LCFCN: Analyzing loss terms

$$\mathcal{L}(S,T) = \underbrace{\mathcal{L}_I(S,T)}_{\text{Image-level loss}} + \underbrace{\mathcal{L}_P(S,T)}_{\text{Point-level loss}} + \underbrace{\mathcal{L}_S(S,T)}_{\text{Split-level loss}} + \underbrace{\mathcal{L}_F(S,T)}_{\text{False positive loss}}$$

Where are the blobs: Counting by localization with point supervision, Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, ECCV 2018

Instance segmentation labeling challenge

Traditional annotation: 1.5 hours per image

WISE: A few seconds per image

WISE: Instance Segmentation with Point Supervision, Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, ECCV 2018

Related work on Instance Segmentation

Metric-based Instance Segmentation

Semantic Instance Segmentation via Deep Metric Learning, Fathi et al, CVPR 2018.

WISE: Weakly-supervised Instance Segmentation

Employing object proposal

Embedding branch

$$\mathcal{L}_W = \lambda \cdot \mathcal{L}_L + (1 - \lambda) \cdot \mathcal{L}_E$$

Instance Segmentation with Point Supervision,
Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, arXiv:1906.0639

Comparison against the SOTA with fixed annotation budget

Method	Annotation	\mathbf{AP}_{25}	\mathbf{AP}_{50}	\mathbf{AP}_{75}
Mask R-CNN (Zhu et al. (2017))	per-pixel	17.1	11.2	03.4
SPN (Zhu et al. (2017))	image-level	26.0	13.0	04.0
PRM (Zhou et al. (2018))	image-level	44.0	27.0	09.0
ILC (Cholakkal et al. (2019))	image-level	48.5	30.2	14.4
PRM + E-Net (Ours)	image-level	43.0	32.0	19.0
WISE (Ours)	point-level	47.5	38.1	23.5

PASCAL VOC- 2012- for 8.13 hours annotation budget

Annotation time per each image, Bearman et al [4]):

Per-pixel: 239.7 Point-level: 20.0 Image-level: 22.1

- [1] SPN: Soft proposal networks for weakly supervised object localization, Zhou et al, CVPR 2017
- [2] ILC: Object Counting and Instance Segmentation with Image-level Supervision, Cholakkal 2019
- [3] PRM: Weakly supervised instance segmentation using class peak response, Zhou et al, CVPR 2018
- [4] Semantic segmentation with point level annotation, Bearman et al, ECCV 2016

Instance Segmentation with Point Supervision,

Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, arXiv:1906.0639

Conclusion on point-level annotation

Can we use labeled data from another domain?

Single-View 3D reconstruction

Single view 3D shape reconstruction

Natural image

3D voxel occupancy grid

Challenges:

- Acquiring large number of views from natural images is impractical
- 3D annotation of natural images is a very label heavy task.
- This is an **ill-posed** problem.

Recent work on 3D reconstruction

Use easy to access 3D CAD repositories as synthetic source of data (pairs of rendered images and voxels)

Challenges:

- PS: Natural image
- Domain shift between rendered images and natural images.
- Unrealistic reconstructed shape.

DAREC: Domain-Adaptive RE-Construction

Domain Confusion Model

Shape prior

Domain-Adaptive single-view 3D reconstruction, Pedro Pinheiro, Negar Rostamzadeh, Sungjin Ahn, ICCV 2019

DAREC: Domain-Adaptive RE-Construction

2 steps training:

1. Shape autoencoder

DAREC: Domain-Adaptive RE-Construction

2 steps training:

- 1. Shape autoencoder
- 2. 3D reconstruction network

$$\mathcal{L}_{img}(\theta_f, \theta_{img}) = - \underset{x^r \sim p_r}{\mathbb{E}} \log D_{img}(f(x^r)) +$$
$$- \underset{x^n \sim p_n}{\mathbb{E}} \log (1 - D_{img}(f(x^n)))$$

DANN: Domain-adversarial training of neural networks. Ganin et al, JMLR, 2016

$$\mathcal{L}_{img}(\theta_f, \theta_{img}) = -\underset{x^r \sim p_r}{\mathbb{E}} \log D_{img}(f(x^r)) + \mathcal{L}_{shape}(\theta_f, \theta_{shape}) = -\underset{x^r \sim p_r}{\mathbb{E}} \log D_{shape}(f(x^r)) + -\underset{x^n \sim p_n}{\mathbb{E}} \log (1 - D_{img}(f(x^n))) - \underset{v \sim p_r}{\mathbb{E}} \log (1 - D_{shape}(E^*(v^r)))$$

DANN: Domain-adversarial training of neural networks. Ganin et al, JMLR, 2016

$$\mathcal{L}_{img}(\theta_f, \theta_{img}) = -\underset{x^r \sim p_r}{\mathbb{E}} \log D_{img}(f(x^r)) + \mathcal{L}_{shape}(\theta_f, \theta_{shape}) = -\underset{x^r \sim p_r}{\mathbb{E}} \log D_{shape}(f(x^r)) + \\ -\underset{x^n \sim p_n}{\mathbb{E}} \log (1 - D_{img}(f(x^n))) - \underset{v \sim p_r}{\mathbb{E}} \log (1 - D_{shape}(E^*(v^r)))$$

$$= \min_{\theta_f} \max_{\theta_{img}, \theta_{shape}} L_{rec}(\theta_f) - \lambda_i L_{img}(\theta_f, \theta_{img}) - \lambda_s L_{shape}(\theta_f, \theta_{shape})$$

DANN: Domain-adversarial training of neural networks. Ganin et al, JMLR, 2016

DAREC—Analyzing loss terms

			Pix3D		
\mathcal{L}_{rec}	\mathcal{L}_{img}	\mathcal{L}_{shape}	voxel	point cloud	
$\overline{\hspace{1cm}}$.220	.148	
\checkmark		\checkmark	.196	.140	
\checkmark	\checkmark		.156	.129	
\checkmark	\checkmark	\checkmark	.140	.112	

Results measured by Chamfer Distance- CD (lower is better)

$$CD(P1,P2) = \frac{1}{|P_1|} \sum_{x \in P_1} min_{y \in P_2} \| x - y \| + \frac{1}{|P_2|} \sum_{x \in P_2} min_{y \in P_1} \| x - y \|$$

DAREC—Comparison against the SOTA

Pix3D dataset	IoU	CD
3D-R2N2 (Choy et al. (2016))	0.136	0.239
3D-VAE-GAN (Wu et al. (2016))	0.171	0.182
PSGN (Fan et al. (2017))	_	0.199
MarrNet (Wu et al. (2017))	0.231	0.144
DRC (Tulsiani et al. (2017))	0.265	0.160
AtlasNet (Groueix et al. (2018))	_	0.126
ShapeHD (Wu et al. (2018))	0.284	0.123
DAREC(ours)	0.237	0.136

IoU (higher is better), CD (lower is better)

DAREC—Feature visualization

t-SNE visualization of Rendered and Natural images, before and domain confusion

DAREC—Feature visualization

t-SNE visualization of 2D rendered embedding and points from shape manifold before and after training

Conclusion on single-view 3D reconstruction

Multimodal learning

Motivation: human Neuropsychological studies

- **Degeneracy in neural structure:** Any single function can be carried out by more than one configuration of neural signals and different neural clusters participate in a number of different functions.
- Edelman's idea of re-entrance: Even in explicitly unimodal tasks, multiple modalities contribute.

Motivation: available large scale multimodal data

Sounds of the Pixels, Zhao et al

Long sleeve blazer in deep navy. Notched lapel collar. Padded shoulders. closure at front. Welt pocket at breast. Flap pockets at waist. Four-button

Fashion-Gen dataset and challenge, Rostamzadeh et al.

Zero-Shot Learning - A Comprehensive Evaluation of the Good, the Bad and the Ugly, Xian et al

AM3: Adaptive Cross-Modal Few-Shot Learning

Chen Xing, Negar Rostamzdeh, Boris N. Oreshkin, Pedro O. Pinheiro, NeurIPS 2019

Deep learning and dataset size

Deep learning models are data hungry

Overfitting risk in small data size

Introduction to Natural Language Processing and Deep Learning, Goyal et al.

Image source: https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42

Humans are faster learners!

Dogs

Cat?

A seen dog?

Adaptive Cross-Modal Few-Shot Learning, Chen Xing, Negar Rostamzadeh, Boris N. Oreshkin, Pedro O. Pinheiro, NeurIPS 2019

Few-shot classification definition

- Learning new classes with the help of few samples (shots) per class.
- Train and Test sets are disjoint.

$$\mathcal{C}_{ ext{train}} \cap \mathcal{C}_{ ext{test}} = \emptyset$$

- During test, K supporting shots are given for every new class to help classification.
- Episodic training

Related work on few shot learning

Metric-based Meta-learning

- Prototypical network (Snell et al)
- TADAM (Oreshkin et al)
- ...

Related work on few shot learning

Metric-based Meta-learning

- Prototypical network (Snell et al)
- TADAM (Oreshkin et al)
- ...

Gradient-based Meta-learning

- MAML (Finn et al)
- CAML (Zintgraf et al)
- SNAIL (Mishra et al)
- LEO (Rusu et al)
- •

Related work on few shot learning

Metric-based Meta-learning

- Prototypical network (Snell et al)
- TADAM (Oreshkin et al)
- ...

Exploiting language semantic structure in few-shot image classification is not explored.

Gradient-based Meta-learning

- MAML (Finn et al)
- CAML (Zintgraf et al)
- SNAIL (Mishra et al)
- LEO (Rusu et al)
- •

Language semantics information can be orthogonal to visual information

Visually close, semantically different

Visually different, semantically close

AM3—Preliminaries: Episodic Training

- Episodic training mimics the test scenario.
- Models are trained on K-shot, N-way episodes.
- For a random sampled episode e:
 - Support Set $S_e = \{(s_i, y_i)\}_{i=1}^{N \times K}$ contains K samples of N categories.
 - Query Set $Q_e = \{(q_j, y_j)\}_{j=1}^Q$ contains samples from N categories.
 - Episode Loss:

$$\mathcal{L}(\theta) = \mathbb{E}_{(\mathcal{S}_e, \mathcal{Q}_e)} - \sum_{t=1}^{Q} \log p_{\theta}(y_t | q_t, \mathcal{S}_e)$$

AM3—Preliminaries: Prototypical Nets

 For each category c in episode e, support set -> centroid (prototype)

$$\mathbf{p}_c = \frac{1}{|S_e^c|} \sum_{(s_i, y_i) \in \mathcal{S}_e^c} f(s_i)$$

 Embedded query points are classified via a softmax over negative distances to class prototypes

$$p(y = c|q_t, S_e, \theta) = \frac{\exp(-d(f(q_t), \mathbf{p}_c))}{\sum_k \exp(-d(f(q_t), \mathbf{p}_k))}$$

This should be a mop!

This should be a mop!

$$\mathbf{p}_c' = \lambda_c \cdot \mathbf{p}_c + (1 - \lambda_c) \cdot \mathbf{w}_c$$

This should be a mop!

$$\mathbf{p}_c' = \lambda_c \cdot \mathbf{p}_c + (1 - \lambda_c) \cdot \mathbf{w}_c$$

This should be a mop!

$$\mathbf{p}_c' = \lambda_c \cdot \mathbf{p}_c + (1 - \lambda_c) \cdot \mathbf{w}_c$$

AM3: Adaptive Modality Mixture Model

AM3: Adaptive Modality Mixture Model

- e_c is the label embedding for category c pre-trained on unsupervised large text corpora
- $w_c = g(e_c)$ is a transformed version of the label embedding for category c

AM3: Adaptive Modality Mixture Model

- e_c is the label embedding for category c pre-trained on unsupervised large text corpora
- $w_c = g(e_c)$ is a transformed version of the label embedding for category c
- h is the adaptive mixing network with parameters θ_h
 - λ_c is calculated *w.r.t*. the transformed label embedding

$$\lambda_c = \frac{1}{1 + \exp(-h(\mathbf{w}_c))}$$

$$\mathbf{p}_c' = \lambda_c \cdot \mathbf{p}_c + (1 - \lambda_c) \cdot \mathbf{w}_c$$

AM3: Comparison to the SOTA

Model		Test Accuracy	
	5-way 1-shot	5-way 5-shot	5-way 10-shot
Uni-modality few-shot learning baselines			
Matching Network (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$	-
Prototypical Network (Snell et al., 2017)	$49.42 \pm 0.78\%$	$68.20 \pm 0.66\%$	$74.30 \pm 0.52\%$
Discriminative k-shot (Bauer et al., 2017)	$56.30 \pm 0.40\%$	$73.90 \pm 0.30\%$	$78.50 \pm 0.00\%$
Meta-Learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$	-
MAML (Finn et al., 2017)	$48.70 \pm 1.84\%$	$63.11 \pm 0.92\%$	-
ProtoNets w Soft k-Means (Ren et al., 2018)	$50.41 \pm 0.31\%$	$69.88 \pm 0.20\%$	-
SNAIL (Mishra et al., 2018)	$55.71 \pm 0.99\%$	$68.80 \pm 0.92\%$	-
CAML (Jiang et al., 2019)	$59.23 \pm 0.99\%$	$72.35 \pm 0.71\%$	-
LEO (Rusu et al., 2019)	$61.76 \pm 0.08\%$	$77.59 \pm 0.12\%$	-
Modality alignment baselines			
DeViSE (Frome et al., 2013)	37.43±0.42%	59.82±0.39%	66.50±0.28%
ReViSE (Hubert Tsai et al., 2017)	$43.20 \pm 0.87\%$	$66.53 \pm 0.68\%$	$72.60 \pm 0.66\%$
CBPL (Lu et al., 2018)	$58.50 \pm 0.82\%$	$75.62 \pm 0.61\%$	-
f-CLSWGAN (Xian et al., 2018)	$53.29 \pm 0.82\%$	$72.58 {\pm} 0.27\%$	$73.49 \pm 0.29\%$
CADA-VAE (Schönfeld et al., 2018)	58.92±1.36%	73.46±1.08%	76.83±0.98%
Modality alignment baselines extended to metric-based FSL framework			
DeViSE-FSL	$56.99 \pm 1.33\%$	$72.63 \pm 0.72\%$	$76.70 \pm 0.53\%$
ReViSE-FSL	$57.23 \pm 0.76\%$	$73.85 \pm 0.63\%$	$77.21 \pm 0.31\%$
f-CLSWGAN-FSL	$58.47 \pm 0.71\%$	$72.23 \pm 0.45\%$	$76.90 \pm 0.38\%$
CADA-VAE-FSL	$61.59 \pm 0.84\%$	$75.63 \pm 0.52\%$	$79.57 \pm 0.28\%$
AM3 and its backbones			
ProtoNets++	$56.52 \pm 0.45\%$	$74.28 \pm 0.20\%$	$78.31 \pm 0.44\%$
AM3-ProtoNets++	$65.21 \pm 0.30\%$	$75.20 \pm 0.27\%$	$78.52 \pm 0.28\%$
TADAM (Oreshkin et al., 2018)	$58.56 \pm 0.39\%$	$76.65 \pm 0.38\%$	$80.83 \pm 0.37\%$
AM3-TADAM	$65.30 \pm 0.49\%$	$\textbf{78.10} \pm \textbf{0.36}\%$	$\textbf{81.57} \pm \textbf{0.47} \%$

Conclusion on AM3

Adaptive Cross-Modal Few-Shot Learning, Chen Xing, Negar Rostamzadeh, Boris N. Oreshkin, Pedro O. Pinheiro, NeurIPS 2019

Few-shot learning

Multimodal learning

cat

Zero-shot learning

Check out this paper in the main conference, presented by Arantxa Casanova

Reinforced Active Learning for Semantic Segmentation

Arantxa Casanova, Pedro O. Pinheiro, Negar Rostamzdeh, Chris Pal

Thanks to all my co-authors!

Pedro Pinheiro

Sugjin Ahn

Chen Xing

Arantxa Casanova

Chris Pal

Boris Oreshkin

Issam Laradji

David Vazquez

Mark Schmidt

Thanks for listening to me!