Learning with less
resources:

minimizing the labeling effort

Negar Rostamzadeh

ICLR 2020 workshop on Practical ML for Developing Countries: learning under
limited/low resource scenarios



Deep Learning and challenges
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ImageNet, Russakovsky et al, 2014

Deep Learning approaches work well with large number of labeled data and good
computational power.



Data annotation challenges-
Video understanding

‘lgl_llllll#'l‘&lll l;l:.;
Spatial stream ConvNet i e | e

-n—v"
sRRNRENERRBRNRRRRRBRERE
softmax

conv1 (| conv2 || conv3 || conv4 || conv5 fullé full7
7x7x96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 4096 2048

stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2

éingle frame  [Pool 2x2 [[pool 2x2

-
e

e

Temporal stream ConvNet

conv1 || conv2 || conv3 || conv4 || conv5 fullé full7
7x7x96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 4096 2048

stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. ||pool 2x2 pool 2x2
pool 2x2

softmax

input -
video multi-frame

——tlaal fa...

Two-Stream Convolutional Networks in Videos, Simonyan and Zisserman

Learning Spatiotemporal Features with 3D

Convolutional Networks, Tran et al.

(e) robot dancing

(f) salsa dancing

Kinetic dataset, Key et al.
AVA: A Video Dataset, Gu et al.



Research question: How can we minimize the labeling effort and still have a good
performance?
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Data annotation challenges-
semantic and instance segmentation
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Input Image Semantic Segmentation Instance Segmentation

In average 1.5 hour to
annotate each image

“The Cityscapes Dataset” M.
Cordts et al. CVPR, 2016

Top picture source: https://towardsdatascience.com/review-deepmask-instance-segmentation-30327a072339



Challenges with scarcity of data

Long tail of data

# labels for data samples

Type of classes and data

We have access to multiple sources of data
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Research question: How can we reduce the labeling effort
while, maintaining a good performance?

e Q1: Can we have cheaper and easier annotations and still have a

competitive performance?

1. Where are the blobs: Counting by localization with point supervision, Laradiji et all, ECCV 2018
2. Instance Segmentation with Point Supervision, Laradji et al, arXiv:1906.06392
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Research question: How can we reduce the labeling effort
while, maintaining a good performance?

e Q1: Can we have cheaper and easier annotations and still have a

competitive performance?

1. Where are the blobs: Counting by localization with point supervision, Laradiji et all, ECCV 2018
2. Instance Segmentation with Point Supervision, Laradji et al, arXiv:1906.06392

e Q2: How to exploit the data from a cheaper to annotate domain?

Domain-Adaptive single-view 3D reconstruction, Pinheiro et al, ICCV 2019

e Q3: How to exploit multiple source of data to solve a problem?

1. Adaptive cross-modal few-shot learning, Xing et al, NeurlPS 2019
2. Neural Multisensory Scene Inference, Lim et al, NeurlPS 2019



Can we have cheaper and easier annotations?




Point-level annotation

Where are the blobs: Counting by localization with point supervision,
Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, ECCV 2018
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Input image Point-level annotated image Output: object instance count

Images source: Microsoft COCO: Common Objects in Context, Lin et al.



Point-level annotation

Where are the blobs: Counting by localization with point supervision,
Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, ECCV 2018
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1 dog
1 person

Input image Point-level annotated image Output: object instance count

Instance Segmentation with Point Supervision,
Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, arXiv:
1906.0639
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Input image Point-level annotated image Output: instance segmentation

Images source: Microsoft COCO: Common Objects in Context, Lin et al.



Localization-based Counting FCN
(LC-FCN)

Segmentation network- FCN
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Input Image Backbone (ResNet) Upsampling path

Persons: 5

e Semantic segmentation network [1] Blob predictions
® The count is the number of predicted blobs

® TJrained to output exactly one blob per each object instance

[1] What’s the Point: Semantic Segmentation with Point Supervision, Bearman et al, ECCV 2016

Where are the blobs: Counting by localization with point supervision,
Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, ECCV 2018




Localization-based Counting FCN (LC-FCN)

Image-level Loss

Discourage predicting
classes not present in
the annotations

LS, T) =~ 3 loB(Sue) = 1 2 loa(l— S0

ceCl,

ceC_,

S: Output mask the model
T: Ground-truth

Where are the blobs: Counting by localization with point supervision,
Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, ECCV 2018




Localization-based Counting FCN (LC-FCN)

Image-level Loss Point-level Loss

Discourage predicting Encourage predicting

classes not present in the classes of the
the annotations annotated pixels

L(S,T) =~ 3 108(Sec) = gy D loa(1=Sie) — 3 log(Sir)

ceC,

ceC_, 1€l

S: Output mask the model
T: Ground-truth

Where are the blobs: Counting by localization with point supervision,
Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, ECCV 2018




Localization-based Counting FCN (LC-FCN)

Point-level segmentation loss [1]

| |

Image-level Loss Point-level Loss

Discourage predicting Encourage predicting

classes not present in the classes of the
the annotations annotated pixels

cECﬁe 1€Lg

S: Output mask the model
T: Ground-truth

[1] What’s the Point: Semantic Segmentation with Point Supervision, Bearman et al, ECCV 2016

Where are the blobs: Counting by localization with point supervision,
Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, ECCV 2018




Localization-based Counting FCN (LC-FCN)

Point-level segmentation loss [1]

| |

Image-level Loss Point-level Loss Split-level Loss False positive Loss
_ o . discourages the
Discourage predicting Encourage predicting prediction of blobs that Discourage predicting
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the annotations annotated pixels point-annotations annotations
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[1] What’s the Point: Semantic Segmentation with Point Supervision, Bearman et al, ECCV 2016

Where are the blobs: Counting by localization with point supervision,
Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, ECCV 2018




LCFCN: Analyzing loss terms
- Qualitative results

MIT Traffic PKLot Trancos Penguins
Separated
Method MAE FS MAE F'S MAE F'S MAE FS
Glance 1.57 - 1.92 - 7.01 - 6.09 -
Lr+Lp 3.11 0.38 39.62 0.04 38.56 0.05 9.81 0.08

Lr+Lp+Ls 1.62 0.76 9.06 0.83 6.76 0.56 4.92 0.53

Lr+Lp+LF 184 0.69 39.60 0.04 38.26 0.05 7.28 0.04

LS, T)= Li(S,T) + Lp(S,T) + Ls(S,T) + Lr(S,T)

Image-level loss  Point-level loss  Split-level loss  False positive loss

Where are the blobs: Counting by localization with point supervision,
Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, ECCV 2018




LCFCN: Analyzing loss terms
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(a) Original Image  (b) L1 + Lp ©L;+Lp+Ls (d) LC-FCN
M True Positive M False Positive M More than one point annotation

LS, T)= Li(S,T) + Lp(S,T) + Ls(S,T) + Lr(S,T)

Image-level loss Point-level loss  Split-level loss  False positive loss

Where are the blobs: Counting by localization with point supervision,
Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, ECCV 2018




Instance segmentation labeling
challenge

Traditional annotation: 1.5 hours per image

person sheep, dog

Annotator
WISE: A few seconds per image

person sheep, dog

Annotator nIy Points

WISE: Instance Segmentation with Point Supervision,
Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, ECCV 2018




Related work on Instance
Segmentation

Metric-based Instance Segmentation
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C3 between pairs of embedding vectors

Semantic Instance Segmentation via Deep Metric Learning, Fathi et al, CVPR 2018.



WISE: Weakly-supervised Instance
Segmentation

Counting branch LC-FCN loss | |
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Instance Segmentation with Point Supervision,
Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, arXiv:1906.0639




Comparison against the SOTA with
fixed annotation budget

Method Annotation AP25 AP5() AP75
Mask R-CNN (Zhu et al. (2017)) | per-pixel 17.1 11.2 034
SPN (Zhu et al. (2017)) image-level | 26.0 13.0 04.0
PRM (Zhou et al. (2018)) image-level | 44.0 27.0 09.0
ILC (Cholakkal et al. (2019)) image-level | 48.5  30.2 14.4
PRM + E-Net (Ours) image-level | 43.0 32.0 19.0
WISE (Ours) point-level 475 381 235

PASCAL VOC- 2012- for 8.13 hours annotation budget

Annotation time per each image, Bearman et al [4]):
Per-pixel: 239.7
Point-level: 20.0
Image-level: 22.1

[1] SPN: Soft proposal networks for weakly supervised object localization, Zhou et al, CVPR 2017
[2] ILC: Object Counting and Instance Segmentation with Image-level Supervision, Cholakkal 2019
[3] PRM: Weakly supervised instance segmentation using class peak response, Zhou et al, CVPR 2018

[4] Semantic segmentation with point level annotation, Bearman et al, ECCV 2016

Instance Segmentation with Point Supervision,
Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, arXiv:1906.0639




Conclusion on point-level annotation

PASCAL VOC 2012
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Instance Segmentation with Point Supervision,
Issam Laradji, Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidth, arXiv:1906.0639




Can we use labeled data from another domain?




Single-View 3D reconstruction

Single view 3D shape reconstruction
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3D voxel occupancy grid

Natural image

Challenges:

e Acquiring large number of views from natural images is impractical
e 3D annotation of natural images is a very label heavy task.
e Thisis anill-posed problem.

Domain-Adaptive single-view 3D reconstruction,
Pedro Pinheiro, Negar Rostamzadeh, Sungjin Ahn, ICCV 2019




Recent work on 3D reconstruction

e Use easy to access 3D CAD repositories as synthetic source of data (pairs of rendered images and J

voxels i
) Train:
L
NS v
- . Decoder '
s \
Rendered image 3D voxel grid
Test:
»
3D voxel grid
Natural image
Challenges: 9

* Domain shift between rendered images and natural images.

* Unrealistic reconstructed shape.

Domain-Adaptive single-view 3D reconstruction,
Pedro Pinheiro, Negar Rostamzadeh, Sungjin Ahn, ICCV 2019




DAREC: Domain-Adaptive RE-
Construction

Domain Confusion




DAREC: Domain-Adaptive RE-
Construction

2 steps training:

1. Shape autoencoder

omain-Adaptive single-view 3D reconstruction,
edro Pinheiro, Negar Rostamzadeh, Sungjin Ahn, ICCV 2019




DAREC: Domain-Adaptive RE-
Construction

2 steps training:

1. Shape autoencoder

2. 3D reconstruction network

omain-Adaptive single-view 3D reconstruction,
edro Pinheiro, Negar Rostamzadeh, Sungjin Ahn, ICCV 2019




Natural image

Rendered image

f

Voxel grid ; @
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~ E 10g (1~ Dimy(f(=")))

x

DANN: Domain-adversarial training of neural networks. Ganin et al, IMLR, 2016

Domain-Adaptive single-view 3D reconstruction,
Pedro Pinheiro, Negar Rostamzadeh, Sungjin Ahn, ICCV 2019
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Natural image
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DANN: Domain-adversarial training of neural networks. Ganin et al, IMLR, 2016

Domain-Adaptive single-view 3D reconstruction,
Pedro Pinheiro, Negar Rostamzadeh, Sungjin Ahn, ICCV 2019




Natural image f § L.
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DANN: Domain-adversarial training of neural networks. Ganin et al, IMLR, 2016

Domain-Adaptive single-view 3D reconstruction,
Pedro Pinheiro, Negar Rostamzadeh, Sungjin Ahn, ICCV 2019




DAREC —Analyzing loss terms

Pix3D
Lree Limg Lshape | VOXel point cloud
v 220 148

v v 196 140
v v 156 129
v v v 140 112

Results measured by Chamfer Distance- CD (lower is better)
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1
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CD(P1,P2) =

D mingep, || x=y |
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XEP,

Domain-Adaptive single-view 3D reconstruction,
Pedro Pinheiro, Negar Rostamzadeh, Sungjin Ahn, ICCV 2019




DAREC —Comparison against the
SOTA

Pi1x3D dataset IoU CD
3D-R2N2 (Choy et al. (2016)) 0.136 0.239
3D-VAE-GAN (Wu et al. (2016
PSGN (Fan et al. (2017))
MarrNet (Wu et al. (2017))

DRC (Tulsiani et al. (2017))
AtlasNet (Groueix et al. (2018))
ShapeHD (Wu et al. (2018))
DAREC(ours) 0.237 0.136

loU (higher is better), CD (lower is better)

omain-Adaptive single-view 3D reconstruction,

ro Pinheiro, Negar Rostamzadeh, Sungjin Ahn, ICCV 2019




DAREC —Feature visualization

Before

t-SNE visualization of Rendered and Natural images, before and
domain confusion

Domain-Adaptive single-view 3D reconstruction,
Pedro Pinheiro, Negar Rostamzadeh, Sungjin Ahn, ICCV 2019




DAREC —Feature visualization

Before After
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t-SNE visualization of 2D rendered embedding and points from shape
manifold before and after training

Domain-Adaptive single-view 3D reconstruction,
Pedro Pinheiro, Negar Rostamzadeh, Sungjin Ahn, ICCV 2019




Conclusion on single-view 3D
reconstruction




Multimodal learning




Motivation: human Neuro-
psychological studies

* Degeneracy in neural structure: Any single function can be

carried out by more than one configuration of neural signals and different
neural clusters participate in a number of different functions.

e Edelman's idea of re-entrance: Even in explicitly unimodal
tasks, multiple modalities contribute.

The Development of Embodied Cognition: Six Lessons from Babies, Smith et al



Motivation: available large scale
multimodal data

) Estim
Input video ated sound components for each location

1(x,y,t)
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Audio-visual
sounds source
separation
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A localization

g E

Input audio I |
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Sounds of the Pixels, Zhao et al

SUITS & BLAZERS
Long sleeve blazer in deep navy. Notched lapel collar. Padded shoulders.

closure at front. Welt pocket at breast. Flap pockets at waist. Four-button Zero-Shot Learning - A Comprehensive

Fashion-Gen dataset and challenge, Rostamzadeh Evaluation of the Good, the Bad and the Ugly,
et al. Xian et al

Training time Test time
Generalized Zero-Shot Learning
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AMS3:
Adaptive Cross-Modal Few-Shot Learning

Chen Xing, Negar Rostamzdeh, Boris N. Oreshkin, Pedro O. Pinheiro,
NeurlPS 2019




Deep learning and dataset size

- Deep learning models are data hungry  Overfitting risk in small data size

Error

Older learning Testing Error

algorithms

Overfitting

A
I
I
[
I
[
[

Performance

% Training Error

> » Dataset Size

Amount of data

Introduction to Natural Language Processing and Deep Learning, Goyal et al.

Image source: https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42



https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42

Humans are faster learners!
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Adaptive Cross-Modal Few-Shot Learning,

Chen Xing, Negar Rostamzadeh, Boris N. Oreshkin, Pedro O. Pinheiro, NeurlPS 2019

Cat?

X
X

Yorkie /
(an unseen breed)

A seen dog?




Few-shot classification definition

e Learning new classes with the help of few samples (shots) per class.

 Train and Test sets are disjoint.

Ctrain A Ctest — @

 During test, K supporting shots are given for every new class to
help classification.

e Episodic training

Adaptive Cross-Modal Few-Shot Learning,
Chen Xing, Negar Rostamzadeh, Boris N. Oreshkin, Pedro O. Pinheiro, NeurlPS 2019




Related work on few shot learning

Metric-based Meta-learning

* Prototypical network (Snell et al)
e TADAM (Oreshkin et al)

Adaptive Cross-Modal Few-Shot Learning,
Chen Xing, Negar Rostamzadeh, Boris N. Oreshkin, Pedro O. Pinheiro, NeurlPS 2019




Related work on few shot learning

Metric-based Meta-learning

* Prototypical network (Snell et al)
e TADAM (Oreshkin et al)

— meta-learning

---- |learning/adaptation
Gradient-based Meta-learning % or
e MAML (Finn et al) °
« CAML (Zintgraf et al) vr, Vﬁz/, o
e SNAIL (Mishra et al) -
e LEO (Rusu et al) 916.//’ 9;

Adaptive Cross-Modal Few-Shot Learning,
Chen Xing, Negar Rostamzadeh, Boris N. Oreshkin, Pedro O. Pinheiro, NeurlPS 2019




Related work on few shot learning

Metric-based Meta-learning
* Prototypical network (Snell et al)
e TADAM (Oreshkin et al)

Exploiting language semantic structure in few-shot
image classification is not explored.

-=-- Ie;rt;i;gu/lalla;;tation
Gradient-based Meta-learning % or
e MAML (Finn et al) °
« CAML (Zintgraf et al) vr, Vﬁz/, o
e SNAIL (Mishra et al) -
e LEO (Rusu et al) 9,{./' 9;

Adaptive Cross-Modal Few-Shot Learning,
Chen Xing, Negar Rostamzadeh, Boris N. Oreshkin, Pedro O. Pinheiro, NeurlPS 2019




Language semantics information can
be orthogonal to visual information

Komondor

Visually close, semantically Visually different, semantically close
different

Adaptive Cross-Modal Few-Shot Learning,
Chen Xing, Negar Rostamzadeh, Boris N. Oreshkin, Pedro O. Pinheiro, NeurlPS 2019




AM3 —Preliminaries: Episodic
Training

- Episodic training mimics the test scenario.
« Models are trained on K-shot, N-way episodes.

- For a random sampled episode e:

}NXK

- Support Set S = {(s:,¥i)},7 contains K samples of N categories.

- Query Set Q. = {(gj yj)}?zl contains samples from N categories.

- Episode Loss: 0

L(0) = lo :
(0) = (se,g) Z g Po(Yt|Gt, Se)

Adaptive Cross-Modal Few-Shot Learning,
Chen Xing, Negar Rostamzadeh, Boris N. Oreshkin, Pedro O. Pinheiro, NeurlPS 2019




AM3 —Preliminaries: Prototypical
Nets

e For each category c in episode
e, support set -> centroid

(prototype)

C
§:<g e Embedded query points are classified
via a softmax over negative distances

to class prototypes

. exp(—d(f(qt), Pc))
p(y = clgt, Se, 0) = > exp(—d(f(gt), Pr))

Adaptive Cross-Modal Few-Shot Learning,
Chen Xing, Negar Rostamzadeh, Boris N. Oreshkin, Pedro O. Pinheiro, NeurlPS 2019




AM3: komodor or a mop?

Visual info only

Adaptive Cross-Modal Few-Shot Learning,
Chen Xing, Negar Rostamzadeh, Boris N. Oreshkin, Pedro O. Pinheiro, NeurlPS 2019




AM3: komodor or a mop?
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AM3: komodor or a mop?
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This should be a
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It is a Komondor!
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AM3: Adaptive Modality Mixture Model
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AM3: Adaptive Modality Mixture Model
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AM3: Adaptive Modality Mixture Model
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AM3: Comparison to the SOTA

Model Test Accuracy

S-way 1-shot S-way 5-shot 5-way 10-shot

Uni-modality few-shot learning baselines
Matching Network (Vinyals et al., 2016) 4356 = 0.84% 55.31 £0.73% -
Prototypical Network (Snell et al., 2017) 4942 + 0.78% 68.20 £ 0.66%  74.30 &+ 0.52%
Discriminative k-shot (Bauer et al., 2017) 56.30 £0.40% 73.90 £0.30%  78.50 £ 0.00%
Meta-Learner LSTM (Ravi & Larochelle, 2017) 43.44 +0.77%  60.60 £ 0.71% -
MAML (Finn et al., 2017) 48.70 &= 1.84% 63.11 = 0.92% -
ProtoNets w Soft k-Means (Ren et al., 2018) 5041 £0.31% 69.88 + 0.20% -
SNAIL (Mishra et al., 2018) 55.71 £0.99% 68.80 + 0.92% -
CAML (Jiang et al., 2019) 5923 £0.99% 72.35 £0.71% -
LEO (Rusu et al., 2019) 61.76 £ 0.08% 77.59 £0.12% -
Modality alignment baselines

DeViSE (Frome et al., 2013) 37.43+0.42% 59.82+0.39% 66.50+0.28%
ReViSE (Hubert Tsai et al., 2017) 43.20+0.87% 66.53+0.68% 72.60+£0.66%
CBPL (Lu et al., 2018) 58.5040.82% 75.624+0.61% -
f-CLSWGAN (Xian et al., 2018) 53.29+0.82% 72.58+0.27% 73.494+0.29%

CADA-VAE (Schonfeld et al., 2018)

58.92+1.36%

73.46+1.08%

76.83+0.98%

Modality alignment baselines extended to metric-based FSL framework

DeViSE-FSL 5699+ 1.33% 72.63+0.72% 76.70 & 0.53%
ReViSE-FSL 5723+ 0.76% 73.85+0.63% 77.21 +0.31%
f-CLSWGAN-FSL 5847 +£0.71% 7223 +£0.45%  76.90 = 0.38%
CADA-VAE-FSL 61.59 +0.84% 75.63 £0.52%  79.57 & 0.28%
AM3 and its backbones
ProtoNets++ 56.52 +0.45% 7428 +0.20% 78.31 4+ 0.44%
AM3-ProtoNets++ 65.21 £ 0.30% 75.20+0.27%  78.52 & 0.28%
TADAM (Oreshkin et al., 2018) 58.56 = 0.39% 76.65 = 0.38%  80.83 + 0.37%
AM3-TADAM 65.30 - 0.49% 78.10 + 0.36% 81.57 &+ 0.47 %




Conclusion on AM3

Komondor
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Few-shot learning

Cheaper annotation

Very Accurate masks

Zero-shot learning

Multi-domain learning

Domain Confusion

Shape prior

Active learning




Check out this paper in the main conference, presented by Arantxa
Casanova

Reinforced Active Learning for
Semantic Segmentation

Arantxa Casanova, Pedro O. Pinheiro, Negar Rostamzdeh, Chris Pal
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