On Iterative Neural Network Pruning, Reinitialization, and the Similarity of Masks

Workshop on Practical ML for Developing Countries, ICLR 2020 Michela Paganini (Facebook Al Research), Jessica Zosa Forde (Brown University)

In the context of the Lottery Ticket Hypothesis (Frankle & Carbin, 2018)... Do different pruning methods identify the same "winning ticket"? Or is there more than one?

FACEBOOK AI

Research Findings

- 1. ∃ multiple different lottery tickets within an over-parametrized network
- 2. possible to find them through a variety of pruning techniques [extends the findings of Zhou et al. (2019)]
- 3. random structured pruning > random unstructured pruning
 - nets are more resistant to the removal of random units/ channels than random individual connections

[experiments shown here for LeNet on MNIST]

Effective Fraction of Pruned Weights

Research Findings

and similarly performing networks make different mistakes on held-out test sets

S

	Number of examples in the MNIST test set over L2 structur								structured -	10000	3821	3221	3652	1555	2009	3676				
		W IO	hich t runino	he su i tech	b-netw nique a	/orks o aaree c	obtained on the pr ter 18 pr	ed t pre	through ea rediction, or runing itera	ch า	L ₁	structured -	3821	10000	3081	3760	1398	2024	3848	
		a\	/erage	e (ove	r 5 see	eds), af		pru		iterat	ions:	L_1 un	structured -	3221	3081	10000	3291	2570	3230	3276
hybrid - random structured - $L_{-\infty}$ structured -									3652	3760	3291	10000	1144	1514	7774					
									1555	1398	2570	1144	10000	8339	1127					
									2009	2024	3230	1514	8339		1466					
fc-only L_1 unstructured -										3676	3848	3276	7774	1127	1466	10000				
Sub-network accuracies at each pruning iteration + ensembling:										L ₂ structured -	L ₁ structured -	unstructured -	hybrid -	om structured-	-∞ structured -	unstructured -				
Pruning Iteration	L_2 S	L_1 S	L_1 US	hybrid	random S	$L_{-\infty}$ S	fc-only L_1	L_1 US	JS all	hybrid + fc-only L_1 US	US					L ₁		rando	L.	uly L ₁
18	36.7	37.8	32.4	81.8	11.3	14.5	87.4	4	91.0	91	.6									fc-01
FACEBOOK AL																				

5. networks pruned via different iterative pruning techniques learn vastly different functions of their input,

techniques, even without late resetting

(x-axis), for weights in the 2nd convolutional layer in the LeNet architecture (seed: 0)

Should I rewind or fine-tune? What's the difference?

FACEBOOK AI

Research Findings

4. patterns similar to structured pruning (~feature selection). Not true for finetuning.

LeNet conv1 weights

structured pruning + rewinding

AlexNet conv2 weights

unstructured pruning + rewinding

FACEBOOK AI

lottery ticket-style weight rewinding, coupled with unstructured pruning, gives rise to connectivity

unstructured pruning + rewinding

unstructured pruning + finetuning

VGG11 conv2 weights

unstructured pruning + rewinding

Questions?

Contact us: michela@fb.com, jessica_forde@brown.edu

FACEBOOK AI

