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Do different pruning methods
identify the same "winning ticket""?
Or is there more than one?



Research Findings

1. 3 multiple different lottery tickets

within an over-parametrized
network

2. possible to find them through a
variety of pruning techniques
[extends the findings of Zhou et
al. (2019)]

3. random structured pruning >
random unstructured pruning

= nets are more resistant to the
removal of random units/
channels than random
Individual connections

lexperiments shown here for LeNet on MNIST]
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Research Findings

5. networks pruned via different iterative pruning technigues learn vastly different functions of their input,
and similarly performing networks make different mistakes on held-out test sets

Number of examples in the MNIST test set over L, structured |

which the sub-networks obtained through each
pruning technique agree on the prediction, on
average (over 5 seeds), after 18 pruning iterations: L unstructured
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Sub-network accuracies at each pruning iteration + ensembling:
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Weight

Research Findings

6. weight stability to pruning correlates with performance, and can be induced through suitable pruning
techniques, even without late resetting

Weight values (y-axis) after 30 epochs of training at various consecutive sparsity levels
(x-axis), for weights in the 2nd convolutional layer in the LeNet architecture (seed: 0)
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Should | rewind or fine-tune?
What's the difference?



Research Findings

4. |ottery ticket-style weight rewinding, coupled with unstructured pruning, gives rise to connectivity
patterns similar to structured pruning (~feature selection). Not true for finetuning.

LeNet conv1 weights
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structured pruning + rewinding

AlexNet conv2 weights

unstructured pruning + rewinding

unstructured pruning + rewinding

VGG11 conv2 weights

unstructured pruning + finetuning

unstructured pruning + rewinding




Questions?

Contact us: michela@fb.com, jessica_forde@brown.edu
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