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Introduction

Afro-MNIST

R, ® (lassitying Hindu-Arabic numerals in the MNIST
prabhe dataset! has become the “Hello world” challenge in the

oL a0 machine learning community.

Introduction ® This task has excited a large number of prospective
machine learning scientists and has led to practical
advancements in OCR.
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MNIST dataset?

1Yann LeCun et al. “Gradient-based learning applied to document recognition”. In: Proceedings of the IEEE

86.11 (1998), pp. 2278-2324.

2Wikimedia Commons.
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Introduction high-resource languages, which use the Hindu-Arabic
numeral system.

® Of over 7,000 languages in the world,? the vast majority
are not represented in the ML research community.

® There are many alternative numeral systems for which
an MNIST-style dataset is not available.

3David M. Eberhard, Gary F Simons, and Charles D Fennig. Languages of the World. 2019. URL:
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Introduction

Introduction

® Much of the world’s linguistic diversity comes from
languages spoken in developing nations.

® There is a wealth of linguistic diversity in the
languages of Africa, many of which have dedicated
orthographies and numeral systems.

® One notable example is the Ge’ez (Ethiopic) script,
which is used to transcribe languages such as Amharic
and Tigrinya, spoken by some 30 million people.*

“70H

Ge’ez written in the Ge’ez script

41bid.
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The numeral system is the most endangered aspect of any
language®

5Emmanuel Mfanafuthi Mgqwashu. “Academic literacy in the mother tongue: A pre-requisite for
epistemological access”. In: Diversity, Transformation and Student Experience in Higher Education Teaching and
Learning (2011), p. 159.




Afro-MNIST

Wu, Yang,
Prabhu

PML4DC
ICLR 2020

Proposal

Proposal

® Large amounts of training data for African languages
such as these are not readily available.

® But effective neural networks can be trained on highly
perturbed versions of just a single image of each class.®

® We experiment with creating synthetic numerals that
mimic the likeness of hand-written numerals in those
writing systems.

6 Alexey Dosovitskiy et al. “Discriminative unsupervised feature learning with exemplar convolutional
neural networks”. In: IEEE transactions on pattern analysis and machine intelligence 38.9 (2015), pp. 1734-1747.
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Contributions

® We release synthetic MNIST-style datasets for four
scripts used to write Afro-Asiatic or Niger-Congo
languages: Ge’ez, Vai, Osmanya, N’Ko’, which serve as
drop-in replacements for the MNIST dataset.

® We describe a general framework for resource-light
syntheses of MNIST-style datasets.

e These datasets can be found at
https://github.com/daniel-wu/AfroMNIST.

7The Vai, Osmanya, and N'Ko scripts are not in wide use, but nonetheless they can be synthesized using
the methods we present.
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Methodology

® Generate an exemplar seed dataset for each numeral
system from the corresponding Unicode characters.

® Apply series of elastic deformations and corruptions.

~-ARARBHBRAEBER
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8We note that, in cases where a limited amount of handwritten data is available, deformations and
corruptions can be applied to those examples instead of Unicode exemplars.

8



Experiments

Afro-MNIST

W, Yang, ® We begin by training LeNet-5, the network architecture
e first used on the original MNIST dataset’, for numeral
(CLR 2020 classification.

Dataset Accuracy (%)
MNIST 99.65
Ge’ez-MNIST 99.92
Experiments Vai-MNIST 100
Osmanya-MNIST 99.99
N’Ko-MNIST 100

® After testing a LeNet-5 trained on Ge’ez-MNIST on a
small dataset of handwritten Ge’ez numerals!?, we
found the model achieved only an accuracy of 30.30%.

9LeCun et al., “Gradient-based learning applied to document recognition”.

10Tesfamichael Molla. Ethiopian-MNIST.
sfamichaell074/Ethiopian-MNIST. 2019.

https://github.com/Te


https://github.com/Tesfamichael1074/Ethiopian-MNIST
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® Morphological comparisons!! between MNIST and
Ge’ez-MNIST show clear differences in variance.
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“Kannada-mnist: A new handwritten digits dataset for the kannada language”. In



Summary

Afro-MNIST
Wu, Yang, ® Many writing systems, especially those used in
e developing nations, are underrepresented in the ML
(CLR 2020 community.

¢ Elastic deformations and corruptions show promise in
generating synthetic numeral data, but other methods
of creating synthetic digits more similar to handwritten
digits ought to be explored as well.

Summary

® We expect this benchmark to be a fertile starting point
for exploring augmentation and transfer learning
strategies for low-resource languages.

® We hope that endeavors such as these help encourage
the next generation of diverse ML practitioners to be
part of the broader research community.
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