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Introduction

- Malariais a life threatening disease
transmitted by a bite of an infected female

Who is at Risk?
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« In 2017 nearly half of the world was at risk of
malaria being the poorest and marginalized
communities with the highest risk;

Death Burden
* 93% of the deaths caused by malaria was
reported in Africa in 2017,

* 60% of the reported cases of death were ety il o
Chlldren under 5 yea rs’- Bl Zero cases (23 years) in 2017 Il Not applicable

A alaria Kiiis a cni ever minutes! Source: WHO malaria report 2018 showcasing malaria cases globally
Malaria kill hild y 2 minutes!

The goal of this project is to reduce mortality rate related to malaria disease, particularly in marginalised
communities.



Existing Strategies

e Malaria is curable and with a prompt diagnose and treatment can reduce death.

® Existing rapid diagnosis tests can’t identify the
stage or count the number of parasites
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Computer Vision.

Why Quantitative Diagnosis matters?

'C’- control line

T'-test line

® Uncomplicated malaria patient

Microscope RDT receives oral antimalarial.
Pros: accurate. Pros: fast, portable, no

Cc?ns: takes.tlme (15-30 need of e>'<pe'rt, cheap. e Severe malaria patient receives
mins), requires expert Cons: can’t diagnose parenteral antimalarial.

and labour in count of malaria at early stage,

parasites. no quantitative analysis.

® |n this study we have used computer vision to solve the challenges posed in these existing strategies.



A malaria diagnosis test using a mobile phone that is fast, can detect early stage of malaria, provides quantification of
parasites and not expert dependent.
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Methodology

Data Set
Datasets Number | Number of Number of a e The dataset was split into
of thick blood bounded box 80:10:10 ratio.
patients | smear images of parasites e We had a total of
approximately 7800 bounded
Uganda n/a 1182 7245

box of parasites

® Model used: Facebook
Tanzania 28 100 600 Detectron 2




Methodology

Our Model

® We fine-tuned a coco-pretrained R50-FPN Mask R-CNN from our custom malaria dataset.
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Results

® F1-score=0.841

e AUC=0.898
1.0 - e & . 1.0 - —es— GeneralizedRCNN
0.8 4
0.9 -
g
v}
@ 0.6
2 S 0.8 -
= 0
8 O
a.
o 0.4 - &
~
- 0.7 -
0.2 -
0.6 -
0.0 1 —e— GeneralizedRCNN
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0
False Positive Rate Recall

ROC and Precision-recall for malaria



® Collect more data set (5000 Images) with both parasite and white blood cells labelled to improve the
performance of the model and have a fully automated malaria diagnosis.

e To understand why the model made certain predictions such as false positive and false negative could
also be valuable to improve the model performance

® Training of a smaller network that can easily be deployed in a limited resource area such as a mobile

phone will eliminate the need to deploy the model in a computer server.
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