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Financial Inclusion
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3
Problem Data and pre- Model Integration into
definition processing development practice



Collaborative problem definition is key
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“ I suspect if you were to create a map of data sets throughout
the world, it would look much like the electricity map — data
overload in the U.S., Europe and parts of Asia, yet a mere
sprinkling around North Africa, South Africa, Lagos and Kenya”

Carol Pineau, Vice President of Strategic Partnerships at GeoPoll.

https://www.devex.com/news/the-african-data-gap-what-it-means-for-business-84246



Digitizing farms
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Digitizing farms
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Linking datasets to improve outcome prediction

Joint
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Launching a product into a new market: transfer learning example

Original Market New Market

o
<7

Original Market Borrower New Market Borrower

_ Assumption #1 xy = Gxp
Pxy = PxDy|x Borrowers from both xy xPrix
Original Market = markets default on a loan New Market
Borrowers for the same reasons. Borrowers
AN

Assumption #2
Borrowers from both markets
request a loan for the same reasons.

- Assumption #3
Original Logistic Regression is able to
Market  estimate the ratio of New Market Market

j E and Original Market distributions. j ’;

New

Speakman et al Compass ‘18 June 20-22 Menlo Park and San Jose CA, USA



Explainability for intervention planning

Identify the most important
markers for one entity (e.g.
household or person)

Shows how changes in the
marker profile of a single
entity impacts vulnerability
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Corelation is not causality

Shimoni et al Journal of Machine Learning Research 2019, AMIA 2020 (Submitted manuscript)
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Thank you
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