

Lip Reading by Leveraging Hahn Convolutional Neural Networks in Low-resourced Environments

Hicham Hammouchi

Sidi Mohammed Ben Abdellah University, International University of Rabat

hicham.hammouchi@uir.ac.ma | hi.hammouchi@gmail.com

What's Lip reading?

- Visual Speech Recognition is about understanding what a person is saying by looking at the lips movements
- Lip reading is a hot topic combining two AI fields, Computer Vision and NLP
- Lip reading from dream to reality
 - As AI made many applications and tasks possible especially in computer vision and recognizing things

Why should we build AI Lip Reading Systems?

Source: NALC Laryngectomy UK
Source: Nvidia Drive IX

Deep Learning is about depth

Need to go deeper and build deep architectures

But at the cost of powerful computation resources

What if we stay shallow ?= satisfactory performance guaranteed

- Deal with the high dimensionality in videos with less resources
- Hit two birds with one stone
 - Shallow architecture
 - Satisfactory performance
- Combine Hahn moments and ConvNets in HCNN

HCNN Architecture

Discrete orthogonal Hahn polynomials

$$h_n^{(\alpha,\beta)}(x,N) = (N+\beta-1)_n(N-1)\sum_{k=0}^n (-1)^k \frac{(-n)^k (-x)^k (2N+\alpha+\beta-n-1)^k}{(N+\beta-1)_k (N-1)^k} \frac{1}{k!} , (\alpha,\beta>1)$$

Where $(a)_k$ is the pchhammer symbol

Discrete orthogonal Hahn Moments

2D Hahn moments of $(n \times m)$ for an image of size $(N \times N)$ is given by *:

$$H_{nm} = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} h_m^{(\alpha,\beta)}(x,N) \cdot h_n^{(\alpha,\beta)}(y,N) \cdot f(x,y), \quad \text{with } n,m = 0,1,\dots,N-1$$

^{*} Zhou, Jian, et al. "Image analysis by discrete orthogonal Hahn moments." International Conference Image Analysis and Recognition. 2005.

Image reconstruction property

The image can be constructed as follows

$$\widetilde{f(x,y)} = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} h_m^{(\alpha,\beta)}(x,N) \cdot h_n^{(\alpha,\beta)}(y,N) \cdot H_{nm}, \quad \text{with } n,m = 0,1,\dots,N-1$$

Speech Data

AVLetters (26 Alphabet letters):

780 videos for 10 speakers, every speaker utters the 26 alphabet letters three times. 20 to 40 frame per video

OuluVS2 (10 Digits sequences):

52 speakers uttering 10 digits sequences with a repetition of 3 times each.

High dimensionality (up to 250 frame per video)

Oxford-BBC Lip Reading in Wild (500 words):

500 unique words with up to 1000 utterances per word spoken by different speakers.
30 frame/video

Results

AVLetters

OuluVS	Digits

Order	Accuracy	Order	Accuracy
32	53.41%	32	88.72%
52	59.23%	56	93.72%
56	55.76%	60	92.66%
CNN Without Hahn	39.23%	CNN Without Hahn	42.27%

BBC LipReading in the Wild (order 30)

	Top@1 Accuracy	Top@5 Accuracy	Top@10 Accuracy
HCNN (without DA)	55.86%	82.93%	89.95%
HCNN (+ flip DA)	58.02%	84.54%	90.86%