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B INTRODUCTION

In Guatemala, this type of diagnosis (P Vivax malaria) has several
dis-advantages, trained and experienced microscopist personnel are
needed to identify and quantify the parasite in the thick drop (gold
standard) and blood smears. There is also a high workload for the
staff on the area in which the disease is concentrated; high estimated
time Iin observation of blood films, on average a trained person
observes a thick blood film for 10 to 20 minutes, in endemic areas a
health center can receive between 200 and 300 weekly blood films,
producing ocular fatigue, which is usually is the most influential factor
In an incorrect diagnosis. Automation test through CNN networks it
could accelerate diagnoses, increase the efficiency and performance
of specialists.

We used image set P. Vivax(malaria) infected human blood smears,
accession number BBBCO41version 1, available from the Broad
Bioimage Benchmark Collection (Ljosa et al., 2012). The images
In the dataset contains 1,364 images, with a total of 80,113 labeled
cells, different researchers contributed labeling each cell in the
dataset. These images were contributed by Jane Hung of MIT and
the Broad Institute in Cambridge, MA. Each cell in the biological
Images has a class label an the bounding box coordinates, for the
Infected cell he have four classes gametocytes, rings, trophozoites
and schizonts

I METHODOLOGY

To increase the training data and remove the imbalance of the dataset for one of the classes
and improve the generalization ability of the models, we fist cropped all parasites form
Images using the bounding box location and augmented these images with rotations, then we
generated a method that randomly adds parasites into the training images that had less than
four parasites, the method always add the parasite class that has fewer occurrences this runs

until the different classes are close to be balanced.
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BRESULTS
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Trophozoite Gametocyte Schizont Ring

Model IoU Precision Recall F1 Score
U-Net T1.1% 27.81% 44 29% 34.16%
YOLO T77.17% 45.41% 3.77% 6.96%
YOLO l1st augmented dataset 77.19% 41.56% 4.08%  7.44%
YOLO 2nd angmented dataset 84.85% 57.26% 513%  9.42%
YOLO 3rd auemented dataset 83.66% 46.71% 7.16% 12.42%
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Bl CONCLUSION

We were able to detect malaria parasites in the images, training the
models with augmented datasets helped to improve the performance.
In the future, we plan to extend this work, gathering our dataset, will
be an important step, also creating an ensemble prediction using both
models; we will also experiment with different novel models. Once we
reach better performance measures we plan to automate the whole
process using a robotic arm for manipulating the blood samples, the
goal is to automate the complete process.
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