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Objective

Hybrid Simulations: Tracked Virtual Pathology Stethoscopes (VPS)
a simulation-based solution that train students to perform cardiac
examinations by listening to abnormal heart sounds in otherwise
healthy standardized patients (patient actors).

Figure 1: Points of Cardiac Auscultation [1]
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Cardiac Auscultation (CA)

The auditory detection of heart sounds to diagnose abnormalities, a
crucial skill that is both efficient and cost-effective in medical practice.
CA requires a consistent approach to site detection.

I The areas of auscultation are generally correlated with the cardiac
valves.

Figure 2: Points of Cardiac Auscultation [1]
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Current level of CA proficiency

Several surveys [1] [2] [3], have highlighted a rapid decline in this
time-honored skill.
Many new physicians and trainees have difficulty performing basic
cardiac examinations on their patients.

Obstacles encountered in CA Training:
1 lack of patient access due to short hospital stay.
2 shortage of training time & experienced auscultation teachers.
3 reliance on competing & more expensive technologies.
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Simulation Based Auscultation Training

Medical simulators
Provides a safe and controlled environment for repetitive practice.
Immediate training opportunities. (No need to wait for a suitable real
patient)
Allow easy access to a wide variety of clinical scenarios.

Figure 3: Harvey cardiology patient simulator [1] and PAT Pediatric Auscultation Trainer [3]
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Simulation Based Auscultation Training

Medical simulators
Provides a safe and controlled environment for repetitive practice.
Immediate training opportunities. (No need to wait for a suitable real
patient)
Allow easy access to a wide variety of clinical scenarios.

Limitations
Limited number of speakers and require precise stethoscope placement
mechanical noise from manikin’s internal hardware
Inanimate objects

Figure 4: SimMan 3G manikin [1]
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Simulation Based Auscultation Training

Standardized Patients (patient actors)

Individuals trained to portray a patient with a specific condition in a
realistic, standardized and repeatable way.

I document learner performance,
I provide feedback on both clinical and interpersonal skills and
I realistically represent patient satisfaction.

Nahom Kidane CNN for ECG-based VPS Tracking IEEE BIBM AIBH, 2019 7 / 20



Simulation Based Auscultation Training

Standardized Patients (patient actors)

Individuals trained to portray a patient with a specific condition in a
realistic, standardized and repeatable way.

I document learner performance,
I provide feedback on both clinical and interpersonal skills and
I realistically represent patient satisfaction.

Limitation
Range of symptoms and syndromes they can physically portray is
limited.
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Related Works
Hybrid Simulations: Virtual Pathology Stethoscopes (VPS)

The student hears the abnormal sound instead of the SP’s when
he/she performs cardiac auscultation.
There are currently two methods of activating the VPS:

I Instructor/SP triggered VPS
I Tracked VPS

Figure 5: Ventriloscope stethoscope [4]
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Related Works
Hybrid Simulations: Virtual Pathology Stethoscopes (VPS)

The student hears the abnormal sound instead of the SP’s when
he/she performs cardiac auscultation.
There are currently two methods of activating the VPS:

I Instructor/SP triggered VPS
I Tracked VPS

Figure 6: Magnetic based Tracked VPS [5]
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Related Works

Hybrid Simulations: Virtual Pathology Stethoscopes (VPS)
The student hears the abnormal sound instead of the SP’s when
he/she performs cardiac auscultation.
There are currently two methods of activating the VPS:

I Instructor/SP triggered VPS
I Tracked VPS

Limitation
It requires additional SP training.
The transmitter requires a direct line of sight for signaling.
Magnetic Tracking system is expensive; Sensor is sophisticated.
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Proposed System

Figure 7: Stethoscope apparatus and proposed system.(top-right) The four primary cardiac auscultation sites that
the algorithm can detect. (top-left) Two direct-contact electrodes fixed on a standard stethoscope head to record
ECG signals. (bottom) The setup was attached to an e-health sensor connected to a RaspberryPi computer to run
the ECG signal acquisition program.
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Data Acquisition and Preprocessing

Standardized Patients
10 healthy individuals (8 males and 2 female)

I Exclusion criteria include the presence of a pacemaker,a history of
chronic or hypertension.

I All patients signed consent forms and data was anonymized.

Preprocessing
e-health sensor shield [6] + Raspberry Pi

I 10 second ECG at a sampling rate of 1KHz
I Noises and artifacts from breathing, body movements, and power line

interference were filtered using low pass and high pass filters.
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Data Acquisition and Preprocessing

Acquisition Procedure
160 ten-second ECG recordings

I 4 auscultation area (Aortic, Pulmonic, Mitral, and Tricuspid)
I 4 orientations/auscultation area,
I 5 runs/orientations, and
I 2 postures (seated and supine)

Figure 8: Data Collection
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Segmentation and Hand-crafted features
Hand-crafted features

Amplitude and interval feature vector (size = 14)
I Pan-Tompkins algorithm [7]: to identify the Q, R, and S peaks.
I Wave segmentation method [8]: to find the T wave peak.

Figure 9: Amplitude and interval features are extracted from onset, peak, and offset of QRS and T waves.
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Segmentation and Hand-crafted features

Segmentation
Using the RR interval, we segmented the raw signal into 1 second
window centered on each R-peak.
The signal was downsampled to 200Hz (200 samples)
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Convolution Neural Network Model
1D CNN Model

The CNN is trained to output a class prediction for every beat.
I 2 hidden CNN layers and 2 fully-connected layers
I 128 parallel feature maps and Kernal size of 5

The total training dataset is divide into 80% training and 20%testing.

Figure 10: Data Collection
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Experimental Results

Table 1: Comparison of the CNN model with the previous work

Classifier Features Accuracy Precision Recall F1

Random Forest [9] QRS + T waves 0.84 0.82 0.83 0.83

CNN (current method) QRS + T waves 0.89 0.85 0.87 0.86
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Experimental Results(Cont’d)

Table 2: Model performance for different SP postures

Raw ECG Dataa Average Model Performance(%)

Accuracy Precision Recall F1

Seated 86.1 86.0 86.0 86.2
Supine 92.0 92.0 92.0 92.0

Combined 90.0 90.0 90.0 90.0
a 1 sec row data segmented between each RR interval.
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Experimental Results(Cont’d)

Figure 11: Confusion Matrix
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Conclusion

We investigated the accuracy and validity of a CNN based virtual
pathology stethoscope tracking system.
The preliminary analysis done on 10 subjects, showed promising
performance gain over our previous system.
However, testing on additional subjects as well as different postures is
required to determine the reliability of the system.
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Thank You! Questions ?
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