Rigging The Lottery: Making All Tickets Winners (RigL)

Efficient and accurate training for sparse networks.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, Erich Elsen

Al Residency

Google AI Residency

Brain Montreal

Motivation

Sparse networks and their advantages

Sparse Networks

Dense Network Sparsity: 0

Sparse Network Sparsity: 60%

- → On device training/inference: Reduces FLOPs and network size drastically without harming performance.
- → Reduced memory footprint: We can fit wider/deeper networks in memory and get better performance from the same hardware.
- → Architecture search: Causal relationships? Interpretability?

Sparse networks perform better

for the same parameter count.

Efficient Neural Audio Synthesis, Kalchbrenner, N.,

Elsen, E., Simonyan, K., Noury, S., Casagrande, N., Lockhart, E., Stimberg, F., Oord, A.,Dieleman, S., and Kavukcuoglu, K., 2018

Train Large, Then Compress: Rethinking Model Size for Efficient Training and Inference of

Transformers, Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, Joseph E. Gonzalez, 2020

Accelerating sparsity

Is difficult, but possible

- → <u>Block Sparse Kernels</u>: Efficient sparse operations.
- → <u>Efficient WaveRNN</u>: Text-to-Speech
- → <u>Optimizing Speech Recognition for the Edge</u>: Speech Recognition
- → Fast Sparse Convnets: Fast mobile inference for vision models with sparsity (1.3 2.4x faster).

....and more to come.

How do we find sparse networks?

- → Pruning method requires dense training: (1) limits the biggest sparse network we can train (2) not efficient.
- → Training from scratch performs much worse.
- → Lottery* initialization doesn't help.

* The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks Jonathan Frankle, Michael Carbin, ICLR 2019

Test accuracy of ResNet-50 networks trained on ImageNet-2012 dataset at different sparsity levels*.

* The Difficulty of Training Sparse Neural Networks Utku Evci, Fabian Pedregosa, Aidan Gomez, Erich Elsen, 2019

Can we train sparse neural networks end-to-end?

(without ever needing the dense parameterization)

(as good as the dense-to-sparse methods)

YES. RigL! **Rigging The Lottery:** Making all Tickets Winners

and surpassing pruning performance.

The Algorithm

- → Start from a random sparse network.
- \rightarrow Train the sparse network.
- → Every N steps update connectivity:
 - Drop least magnitude connections
 - Grow new ones using gradient information.

The Algorithm

Evaluation of Connections

Before training

Evaluation of first layer connections during MNIST MLP training.

Resnet-50

RigL matches pruning performance using significantly less resources.

Exceeding Pruning Performance

- RigLoutperforms pruning
- → ERK sparsity distribution:
 - greater performance
 - more FLOPs.

80% ERK on Resnet-50

res-ta_branchza	0.110	
res4a_branch2b		0.913
res4a_branch2c	0.513	
res4a_branch1	0.7	08
res4b_branch2a	0.513	
res4b_branch2b		0.913
res4b_branch2c	0.513	
res4c_branch2a	0.513	
res4c_branch2b		0.913
res4c_branch2c	0.513	
res4d_branch2a	0.513	
res4d_branch2b		0.913
res4d_branch2c	0.513	
res4e_branch2a	0.513	
res4e_branch2b		0.913
res4e_branch2c	0.513	
res4f_branch2a	0.513	
res4f_branch2b		0.913
res4f branch2c	0.513	<u> </u>

Stage 4

(1) Sparsity Distribution Initialization (2) Update Schedule

(3) Drop

(4) Grow

Stage 5

Stage 1-2-3

P 15

Sparse MobileNets

- → Difficult to prune.
- → Much better results with
 RigL.

S	Method	Top-1	FLOP-Inf
0.75	Small-Dense _{5×}	66.0±0.11	0.23x
	Pruning (Zhu)	67.7	0.27x
	$RigL_{5\times}$	$71.5 {\pm} 0.06$	0.27x
	$RigL_{5\times}$ (ERK)	71.9±0.01	0.52x
0.90	Small-Dense _{5×}	57.7±0.34	0.09x
	Pruning (Zhu)	61.8	0.12x
	$RigL_{5\times}$	67.0 ± 0.17	0.12x
	$RigL_{5\times}$ (ERK)	68.1±0.11	0.27x
	Dense	72.1 ± 0.17	1x (1.1e9)
0.75	Big-Sparse _{5×}	76.4 ± 0.05	0.98x
0.75	Big-Sparse _{5×} (ERK)	77.0±0.08	1.91x

same parameter/flops: **4.3% absolute improvement** in Top-1 Accuracy.

Character Level Language Modelling on WikiText-103

- → Similar to WaveRNN.
- → RigL falls short
 of matching
 the pruning
 performance

73.0

Accuracy

76.0

Bad Local Minima and RigL

Static training stucks in a suboptimal basin.

RigL helps escaping from it.

Summary of Contributions

- Training randomly initialized sparse networks without needing the dense parametrization is possible.
- Sparse networks found by RigL can exceed the performance of pruning.
- Non-uniform sparsity distribution like ERK brings better performance.
- RigL can helps us with feature selection.

Limitations

- RigL requires more iterations to converge.
- Dynamic sparse training methods seem to have suboptimal performance training RNNs.
- Sparse kernels that can utilize sparsity during training are not widely available (yet).

Thank you!

- Sparse networks are promising.
- End-to-end sparse training is possible and it has potential to replace dense->sparse training.

https://github.com/google-research/rigl