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ABSTRACT

Despite the rapid growth of online advertisement in developing countries, exist-
ing highly over-parameterized Click-Through Rate (CTR) prediction models are
difficult to be deployed due to the limited computing resources. In this paper,
by bridging the relationship between CTR prediction task and tabular learning,
we present that tabular learning models are more efficient and effective in CTR
prediction than over-parameterized CTR prediction models. Extensive experiments
on eight public CTR prediction datasets show that tabular learning models outper-
form twelve state-of-the-art CTR prediction models. Furthermore, compared to
over-parameterized CTR prediction models, tabular learning models can be fast
trained without expensive computing resources including high-performance GPUs.
Finally, through an A/B test on an actual online application, we show that tabular
learning models improve not only offline performance but also the CTR of real
users.

1 INTRODUCTION

With the spread of mobile devices, the e-commerce market in developing countries is rapidly growing.
For example, the Indian e-commerce market is expected to grow to US$ 200 billion by 2026 from
US$ 38.5 billion as of 20171. Accordingly, Click-Through Rate (CTR) prediction has become
more important in online advertisements in developing countries as well as developed countries.
Regardless of industry and academia, highly over-parameterized CTR prediction models (Lian et al.,
2018; Song et al., 2019; Cheng et al., 2020) have recently been proposed to improve performance
using deep neural networks. These CTR prediction models should train a considerable amount of
parameters to deal with millions of input features. Therefore, massive computing resources, including
high-performance GPUs, are required to train the over-parameterized CTR prediction models.

However, these CTR prediction models are hard to be applied to real-world applications under
limited computing resource scenarios of developing countries. First, it is well known that real-world
applications have a stale problem that the performance of their CTR prediction models is severely
degraded over time by many reasons including change of user/item pools (Nasraoui et al., 2007;
Radinsky et al., 2012; Trevisiol et al., 2014) (See Figure 2). Second, hyper-parameter tuning is
essential for over-parameterized CTR prediction models because they tend to be sensitive to hyper-
parameters (Cheng et al., 2020). To alleviate these issues, solutions using daily training (Koren,
2009; Vartak et al., 2017; Wang et al., 2019), meta-learning (Lee et al., 2019; Chen et al., 2019),
and reinforcement learning (Jagerman et al., 2019; Shi et al., 2019) have been suggested. However,
since these solutions require sufficient computing resources, they are hard to be applied to real-world
applications in developing countries.

In this paper, we bridge the relationship between CTR prediction and tabular learning (Chen et al.,
2015; Ke et al., 2017; Dorogush et al., 2018) to find a practical CTR prediction model that can be
easily deployed in developing countries. In CTR prediction, conventional tabular learning models (Ke
et al., 2017; Dorogush et al., 2018) have been neglected as baselines because input features in CTR
prediction are mainly composed of highly sparse categorical features and it is difficult to be trained
by the tabular learning models (Ke et al., 2019). Meanwhile, the recently proposed methods (Ke
et al., 2017; Dorogush et al., 2018; Ayria, 2020) handling categorical features in tabular learning
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have dramatically improved the performance by slightly modifying primitive categorical feature
encoders (Fisher, 1958; Micci-Barreca, 2001). Borrowing tabular learning models with these methods
to CTR prediction, we demonstrate that tabular learning models outperform existing CTR prediction
models accompanying their cost-efficiency.

Our contributions. (1) We explicitly investigate the relationship between CTR prediction task and
tabular learning, and suggest that tabular learning models could act as efficient baselines in CTR
prediction. (2) Extensive experiments show that tabular learning models outperform current CTR
prediction models, accompanying their cost-efficiency. We believe that our extensive experiment
results of tabular learning models in CTR prediction can contribute to research communities related
to CTR prediction. (3) Finally, our online experiments including the A/B test on an active online
application validate the effectiveness of tabular learning methods under limited computing resources.

2 RELATED WORKS

2.1 CLICK-THROUGH RATE PREDICTION

CTR prediction is to predict the probability of the user u clicking on the item v. The major difference
with collaborative filtering (Rendle et al., 2012) is that CTR prediction utilizes additional side
information about users and items as input features containing highly sparse categorical features.
Factorization Machines (FM) (Rendle, 2010) is the most representative CTR prediction model which
considers the first and second-order feature interactions from input features, simultaneously. Recently,
various CTR prediction models have been proposed to capture the high-order feature interactions via
deep neural networks Cheng et al. (2016); He & Chua (2017); Guo et al. (2017); Lian et al. (2018);
Qu et al. (2018); Song et al. (2019); Cheng et al. (2020). However, these CTR prediction models are
too over-parameterized to be deployed under limited computing resource scenarios.

2.2 TABULAR LEARNING

Tabular learning refers to a learning methodology handling tabular heterogeneous data as input. It
is known that gradient boosting models based on decision trees (Chen et al., 2015; Ke et al., 2017;
Dorogush et al., 2018) show superior performance in tabular learning (Harasymiv, 2015). There have
been many attempts to improve the performance of gradient boosting models using deep networks.
However, they only achieve similar performance to gradient boosting models although they utilize a
large number of computing resources (Miller et al., 2017; Zhou & Feng, 2017; Ke et al., 2018; Lay
et al., 2018; Yang et al., 2018; Feng et al., 2018). Note that we describe the remainder of this paper
using gradient boosting models as representative models of tabular learning since they show better
performance than deep neural network-based models.

3 EFFICIENT CLICK-THROUGH RATE PREDICTION

Although tabular learning and CTR prediction have developed orthogonal to each other so far, they
share similar formulation of problem definition.

argmin
f

∑
i

L(yi, f(xi1, · · · , xin)) (1)

It is to find the function f where minimizes the sum of difference, which is measured by a loss
function L over all the i-th data instances between actual target yi and the output value of function f
with given input xi. The major difference between tabular learning and CTR prediction is that each
x is often assumed to be the set of heterogeneous numerical features in tubular learning while it is
assumed to be the set of highly sparse categorical features in CTR prediction. In CTR prediction, for
instance, xk (k = 1, · · · , n) can be the categorical index of the user u or item v, the gender or age
group of users, and the item category.

Conventional gradient boosting is not capable of handling categorical features. To take the edge off
this problem, several methods have been proposed to convert categorical features into numerical
features such as one-hot encoding, Label Encoding (LE), and Target Encoding (TE), but they are not
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Table 1: Evaluation results of three tabular learning models and twelve CTR prediction models on
eight real-world datasets. Logloss and AUROC with 95% confidence interval of 10-runs is provided.

Model KDD12 Criteo Avazu Talking Data Amazon Movielens Book Crossing Frappe
L

og
lo

ss

XGBoost 0.1588 ± 0.0001 0.4595 ± 0.0050 0.3901 ± 0.0014 0.1327 ± 0.0008 0.4947 ± 0.0003 0.2831 ± 0.0011 0.5141 ± 0.0001 0.2849 ± 0.0019
LightGBM 0.1602 ± 0.0000 0.4569 ± 0.0003 0.3916 ± 0.0003 0.1319 ± 0.0003 0.5627 ± 0.0000 0.2437 ± 0.0014 0.5191 ± 0.0006 0.1176 ± 0.0022
CatBoost 0.1584 ± 0.0001 0.4507 ± 0.0002 0.3840 ± 0.0001 0.1284 ± 0.0001 0.2221 ± 0.0004 0.1192 ± 0.0003 0.4962 ± 0.0001 0.0780 ± 0.0005

FM 0.1595 ± 0.0001 0.4575 ± 0.0002 0.3912 ± 0.0004 0.1342 ± 0.0008 0.5257 ± 0.0036 0.2783 ± 0.0027 0.5224 ± 0.0009 0.2125 ± 0.0053
FFM 0.1599 ± 0.0001 0.4522 ± 0.0001 0.3899 ± 0.0002 0.1347 ± 0.0003 0.4780 ± 0.0007 0.2414 ± 0.0040 0.5143 ± 0.0008 0.1651 ± 0.0020
AFM 0.1607 ± 0.0005 0.4605 ± 0.0005 0.3941 ± 0.0002 0.1389 ± 0.0020 0.5498 ± 0.0063 0.2714 ± 0.0112 0.5229 ± 0.0045 0.2648 ± 0.0051
DCN 0.1599 ± 0.0001 0.4596 ± 0.0002 0.3926 ± 0.0003 0.1351 ± 0.0005 0.4304 ± 0.0021 0.2897 ± 0.0006 0.5226 ± 0.0011 0.2400 ± 0.0066
NFM 0.1626 ± 0.0015 0.4568 ± 0.0005 0.3910 ± 0.0005 0.1338 ± 0.0004 0.4922 ± 0.0153 0.2862 ± 0.0243 0.5256 ± 0.0016 0.1418 ± 0.0074
MLP 0.1593 ± 0.0001 0.4568 ± 0.0003 0.3923 ± 0.0006 0.1334 ± 0.0008 0.4228 ± 0.0018 0.2829 ± 0.0068 0.5233 ± 0.0012 0.2375 ± 0.0152

Wide & Deep 0.1593 ± 0.0001 0.4567 ± 0.0003 0.3921 ± 0.0005 0.1335 ± 0.0009 0.4273 ± 0.0013 0.2833 ± 0.0044 0.5232 ± 0.0011 0.2387 ± 0.0274
DeepFM 0.1602 ± 0.0001 0.4586 ± 0.0004 0.3920 ± 0.0004 0.1343 ± 0.0006 0.4317 ± 0.0024 0.2889 ± 0.0020 0.5219 ± 0.0019 0.2244 ± 0.0102
xDeepFM 0.1603 ± 0.0002 0.4589 ± 0.0004 0.3926 ± 0.0004 0.1344 ± 0.0006 0.4346 ± 0.0017 0.2883 ± 0.0012 0.5223 ± 0.0018 0.2214 ± 0.0142

PNN 0.1604 ± 0.0001 0.4573 ± 0.0003 0.3927 ± 0.0003 0.1357 ± 0.0005 0.4355 ± 0.0028 0.2902 ± 0.0013 0.5225 ± 0.0007 0.1957 ± 0.0057
AutoInt 0.1611 ± 0.0001 0.4615 ± 0.0002 0.3953 ± 0.0006 0.1409 ± 0.0014 0.4556 ± 0.0043 0.2906 ± 0.0011 0.5236 ± 0.0014 0.2736 ± 0.0233

AFN 0.1598 ± 0.0002 0.4552 ± 0.0006 0.3912 ± 0.0009 0.1327 ± 0.0005 0.4274 ± 0.0016 0.2768 ± 0.0036 0.5259 ± 0.0024 0.1853 ± 0.0046

A
U

R
O

C

XGBoost 0.7646 ± 0.0003 0.7889 ± 0.0061 0.7613 ± 0.0028 0.9719 ± 0.0003 0.7395 ± 0.0005 0.9380 ± 0.0006 0.8019 ± 0.0002 0.9353 ± 0.0007
LightGBM 0.7572 ± 0.0003 0.7922 ± 0.0003 0.7584 ± 0.0006 0.9724 ± 0.0001 0.4946 ± 0.0009 0.9483 ± 0.0008 0.7951 ± 0.0006 0.9855 ± 0.0005
CatBoost 0.7655 ± 0.0003 0.7993 ± 0.0002 0.7734 ± 0.0002 0.9736 ± 0.0001 0.9598 ± 0.0001 0.9848 ± 0.0001 0.8183 ± 0.0001 0.9925 ± 0.0002

FM 0.7618 ± 0.0006 0.7922 ± 0.0003 0.7600 ± 0.0008 0.9710 ± 0.0003 0.6823 ± 0.0118 0.9375 ± 0.0014 0.7945 ± 0.0009 0.9659 ± 0.0012
FFM 0.7610 ± 0.0004 0.7979 ± 0.0001 0.7622 ± 0.0005 0.9707 ± 0.0002 0.7592 ± 0.0008 0.9529 ± 0.0015 0.8014 ± 0.0007 0.9752 ± 0.0004
AFM 0.7571 ± 0.0029 0.7883 ± 0.0006 0.7541 ± 0.0005 0.9689 ± 0.0010 0.6013 ± 0.0334 0.9423 ± 0.0077 0.7938 ± 0.0037 0.9544 ± 0.0014
DCN 0.7602 ± 0.0006 0.7895 ± 0.0005 0.7569 ± 0.0006 0.9700 ± 0.0004 0.8146 ± 0.0018 0.9348 ± 0.0004 0.7929 ± 0.0008 0.9669 ± 0.0014
NFM 0.7576 ± 0.0014 0.7929 ± 0.0007 0.7600 ± 0.0006 0.9712 ± 0.0004 0.7402 ± 0.0212 0.9441 ± 0.0047 0.7917 ± 0.0014 0.9821 ± 0.0011
MLP 0.7627 ± 0.0005 0.7929 ± 0.0005 0.7574 ± 0.0012 0.9717 ± 0.0003 0.8233 ± 0.0013 0.9413 ± 0.0036 0.7926 ± 0.0012 0.9628 ± 0.0055

Wide & Deep 0.7626 ± 0.0004 0.7930 ± 0.0005 0.7580 ± 0.0005 0.9715 ± 0.0010 0.8184 ± 0.0009 0.9407 ± 0.0033 0.7932 ± 0.0025 0.9648 ± 0.0034
DeepFM 0.7585 ± 0.0005 0.7908 ± 0.0006 0.7581 ± 0.0006 0.9705 ± 0.0006 0.8139 ± 0.0024 0.9354 ± 0.0018 0.7944 ± 0.0008 0.9630 ± 0.0035
xDeepFM 0.7580 ± 0.0007 0.7904 ± 0.0005 0.7572 ± 0.0006 0.9705 ± 0.0004 0.8101 ± 0.0025 0.9366 ± 0.0019 0.7941 ± 0.0013 0.9686 ± 0.0038

PNN 0.7584 ± 0.0007 0.7927 ± 0.0006 0.7569 ± 0.0004 0.9702 ± 0.0002 0.8094 ± 0.0029 0.9361 ± 0.0013 0.7934 ± 0.0008 0.9742 ± 0.0015
AutoInt 0.7559 ± 0.0018 0.7872 ± 0.0002 0.7516 ± 0.0010 0.9682 ± 0.0006 0.7873 ± 0.0055 0.9361 ± 0.0004 0.7927 ± 0.0009 0.9427 ± 0.0117

AFN 0.7598 ± 0.0016 0.7947 ± 0.0007 0.7600 ± 0.0015 0.9717 ± 0.0005 0.8173 ± 0.0017 0.9430 ± 0.0016 0.7921 ± 0.0025 0.9760 ± 0.0018

suitable for the CTR prediction task. One-hot encoding is not practical because the input dimension
becomes too large when we apply one-hot encoding to highly sparse categorical features (having
extremely high cardinality). LE, which converts a categorical feature into an arbitrary number, would
show sub-optimal performance since there are few correlations between the target category and its
encoded number. Meanwhile, TE changes the categorical feature into an informative number by
calculating the mean of target values with each categorical feature (Micci-Barreca, 2001). However,
TE causes overfitting by giving excessive information on each categorical feature (Schifferer et al.,
2020).

Recently, there have been new attempts to process categorical features in tabular learning. Ke
et al. (2017) adopts Fisher (1958) to find the optimal split over categorical features. CatBoost
Encoding (Dorogush et al., 2018) is a variant of TE preventing overfitting by random permutation.
In addition, K-Fold Target Encoding (Ayria, 2020) is intended to increase generality of TE through
the K-fold validation. Schifferer et al. (2020) won a competition by applying the K-fold TE to
XGBoost (Chen et al., 2015).

Recent advances in encoding methods of categorical features make it possible for tabular learning to
be used for CTR prediction although they do not focus on categorical features with tremendously high
cardinality. Nevertheless, most CTR prediction models preclude gradient boosting as a baseline (Qu
et al., 2018; Song et al., 2019; Cheng et al., 2020). He et al. (2014); Juan et al. (2016) employ gradient
boosting as not a baseline but a feature pre-processing method. Only a few studies (Ke et al., 2019)
have compared gradient boosting to their model. However, they do not take advantage of the recent
advance in encoding methods to deal with categorical features.

Consequently, we suggest gradient boosting models with the recent advance in handling categorical
features as the baselines of the CTR prediction task. In Section 4, we will show that gradient boosting
not only can be trained at low cost, but also shows better performance than existing CTR prediction
models. These results demonstrate that gradient boosting is suitable for use in developing countries
with limited resources. Noticeably, it is known that considering high order interaction between
features is important in the CTR prediction task and gradient boosting also has the capability of
modeling high order interaction by depth (> 1) of the decision tree.

4 EXPERIMENTS

In this paper, we compare gradient boosting models with existing CTR prediction models. In Sec-
tion 4.1, we assess the performance of each model on CTR prediction benchmark datasets. In
Section 4.2, we conduct experiments to show the cost-efficiency of gradient boosting models. In
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Table 2: Ablation study results of three tabular learning models regarding to encoding methods of
categorical features. Logloss and AUROC with 95% confidence interval of 10-runs is provided.

Model Encoding KDD12 Criteo Avazu Talking Data Amazon Movielens Book Crossing Frappe
L

og
lo

ss

XGBoost
LE 0.1624 ± 0.0002 0.4613 ± 0.0009 0.3930 ± 0.0007 0.1332 ± 0.0007 0.5532 ± 0.0010 0.3125 ± 0.0012 0.5415 ± 0.0033 0.1805 ± 0.0098
TE 0.1723 ± 0.0010 0.4726 ± 0.0008 0.5194 ± 0.0025 0.1543 ± 0.0023 0.6047 ± 0.0004 0.3619 ± 0.0014 0.8306 ± 0.0006 0.3059 ± 0.0011
- 0.1588 ± 0.0001 0.4595 ± 0.0050 0.3901 ± 0.0014 0.1327 ± 0.0008 0.4947 ± 0.0003 0.2831 ± 0.0011 0.5141 ± 0.0001 0.2849 ± 0.0019

LightGBM
LE 0.1617 ± 0.0004 0.4628 ± 0.0010 0.3913 ± 0.0005 0.1302 ± 0.0002 0.5151 ± 0.0006 0.4609 ± 0.0005 0.5383 ± 0.0049 0.2576 ± 0.0068
TE 0.1656 ± 0.0001 0.4710 ± 0.0001 0.4260 ± 0.0001 0.1439 ± 0.0003 0.5661 ± 0.0001 0.3226 ± 0.0002 0.6013 ± 0.0004 0.2942 ± 0.0003
- 0.1602 ± 0.0000 0.4569 ± 0.0003 0.3916 ± 0.0003 0.1319 ± 0.0003 0.5627 ± 0.0000 0.2437 ± 0.0014 0.5191 ± 0.0006 0.1176 ± 0.0022

CatBoost
LE 0.1622 ± 0.0001 0.4656 ± 0.0004 0.3924 ± 0.0001 0.1303 ± 0.0001 0.5232 ± 0.0003 0.4776 ± 0.0009 0.5507 ± 0.0002 0.2888 ± 0.0014
TE 0.1683 ± 0.0032 0.4654 ± 0.0005 0.4774 ± 0.0226 0.1447 ± 0.0011 0.5943 ± 0.0024 0.3209 ± 0.0100 0.6252 ± 0.0143 0.2795 ± 0.0021
- 0.1584 ± 0.0001 0.4507 ± 0.0002 0.3840 ± 0.0001 0.1284 ± 0.0001 0.2221 ± 0.0004 0.1192 ± 0.0003 0.4962 ± 0.0001 0.0780 ± 0.0005

A
U

R
O

C

XGBoost
LE 0.7422 ± 0.0013 0.7869 ± 0.0011 0.7564 ± 0.0013 0.9718 ± 0.0003 0.5833 ± 0.0042 0.9241 ± 0.0006 0.7743 ± 0.0032 0.9721 ± 0.0025
TE 0.7258 ± 0.0012 0.7768 ± 0.0009 0.6960 ± 0.0004 0.9572 ± 0.0021 0.3054 ± 0.0032 0.9043 ± 0.0008 0.7029 ± 0.0010 0.9295 ± 0.0005
- 0.7646 ± 0.0003 0.7889 ± 0.0061 0.7613 ± 0.0028 0.9719 ± 0.0003 0.7395 ± 0.0005 0.9380 ± 0.0006 0.8019 ± 0.0002 0.9353 ± 0.0007

LightGBM
LE 0.7468 ± 0.0021 0.7852 ± 0.0013 0.7599 ± 0.0009 0.9730 ± 0.0001 0.6892 ± 0.0012 0.8324 ± 0.0005 0.7793 ± 0.0054 0.9514 ± 0.0026
TE 0.7165 ± 0.0007 0.7767 ± 0.0006 0.6939 ± 0.0003 0.9652 ± 0.0003 0.2908 ± 0.0092 0.9091 ± 0.0001 0.6967 ± 0.0059 0.9290 ± 0.0003
- 0.7572 ± 0.0003 0.7922 ± 0.0003 0.7584 ± 0.0006 0.9724 ± 0.0001 0.4946 ± 0.0009 0.9483 ± 0.0008 0.7951 ± 0.0006 0.9855 ± 0.0005

CatBoost
LE 0.7436 ± 0.0003 0.7816 ± 0.0005 0.7579 ± 0.0003 0.9729 ± 0.0001 0.6711 ± 0.0009 0.8164 ± 0.0008 0.7641 ± 0.0004 0.9360 ± 0.0006
TE 0.7300 ± 0.0065 0.7867 ± 0.0012 0.6822 ± 0.0179 0.9654 ± 0.0005 0.2798 ± 0.0069 0.9086 ± 0.0013 0.7047 ± 0.0064 0.9395 ± 0.0008
- 0.7655 ± 0.0003 0.7993 ± 0.0002 0.7734 ± 0.0002 0.9736 ± 0.0001 0.9598 ± 0.0001 0.9848 ± 0.0001 0.8183 ± 0.0001 0.9925 ± 0.0002
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Figure 1: AUROC by training cost estimated on AWS EC2 instances.

Section 4.3, we verify how much recent categorical feature encoding methods contribute to the
performance through ablation study. In Section 4.4, we demonstrate the performance of gradient
boosting models on online experiments and the possibility to alleviate the stale problem at a low cost.

Datasets. To assess the performance in CTR prediction, we conduct experiments on the following
eight public CTR prediction datasets: KDD12, Criteo, Avazu, Data, Movielens (Harper & Konstan,
2015), Book-Crossing (Ziegler et al., 2005), and Frappe. We arbitrarily split each dataset into the
train, valid, and test sets in a ratio of 8:1:12.

Baseline Models. Three gradient boosting models and twelve CTR prediction models are con-
sidered to justify the efficiency and effectiveness of gradient boosting models in CTR prediction.
XGBoost (Chen et al., 2015), LightGBM (Ke et al., 2017) and CatBoost (Dorogush et al., 2018)
are considered for gradient boosting models. Since the originally proposed XGBoost uses LE, K-
fold TE (Ayria, 2020) is applied to XGBoost following Schifferer et al. (2020). Considered CTR
prediction models are as follows: FM (Rendle, 2010), FFM (Juan et al., 2016), AFM (Xiao et al.,
2017), DCN (Wang et al., 2017), MLP, NFM (He & Chua, 2017), Wide & Deep (Cheng et al., 2016),
DeepFM (Guo et al., 2017), xDeepFM (Lian et al., 2018), PNN (Qu et al., 2018), AutoInt (Song
et al., 2019), and AFN (Cheng et al., 2020). In developing countries, since it is difficult to perform
hyper-parameter tuning every day, we do not newly tune hyper-parameters and do our best to keep
originally hyper-parameters reported in each paper.

4.1 PERFORMANCE COMPARISON

The evaluation results are summarized in Table 1. CatBoost, which is one of the gradient boosting
models, outperforms all the baseline models on all the datasets with a large margin while a slight

2For KDD12, Criteo, Avazu, and Talking Data, 10% random sampling is used because they are too large not
to be suitable for our extensive experimentation

4



Under review as a conference paper at ICLR 2020

0 20 40 60 80 100 120 140
# of days after first model deployment

Cl
ick

-T
hr

ou
gh

 R
at

e
Start Daily Training

Region X

0 20 40 60 80 100 120 140
# of days after first model deployment

Start Daily Training

Region Y

Figure 2: Alleviating stale problem by daily training with CatBoost. CTR over time after first model
deployment on two main regions X and Y of our application is plotted.

increase in AUROC or decrease in Logloss at .001-level is known as a significant improvement in
CTR prediction as pointed out in previous works (Cheng et al., 2016; Guo et al., 2017; Song et al.,
2019). In addition, the other gradient boosting methods (XGBoost and LightGBM) achieve better or
comparable performance to CTR prediction models over all the benchmark datasets.

4.2 EFFICIENCY COMPARISON

In each dataset, the efficiency of gradient boosting models is validated by plotting the change
of AUROC according to the training cost 3. Training costs are estimated on AWS EC2 instances.
c5a.4xlarge is used for gradient boosting models because they do not need GPUs. p3.2xlarge
is used for CTR prediction models because they require GPUs. For gradient boosting models, training
cost and AUROC in every ten epochs are also reported. Boosting models shows dramatic improvement
in the performance at the early stages of training.

4.3 ABLATION STUDY

By replacing the latest categorical feature encoding methods with LE and TE, Table 2 shows that how
much the leverage of recent advance of the categorical encoding methods contributes to performance
improvement. Mostly, recent categorical feature encoding methods show statistically significant better
results.

4.4 ONLINE EXPERIMENTS

Table 3: CTR gain of
CatBoost model in on-
line A/B test.

CTR Gain

Region X + 59.47%
Region Y + 84.96%

Based on the offline test in Section 4.1, CatBoost is adopted for deploying
to our online application downloaded more than 10M times. Table 3 shows
CTR gain by CatBoost relative to the control group (heuristic algorithm)
in online A/B test for seven days on two main regions (Region X and Y).
CatBoost outperforms the existing heuristic algorithm with a large margin.
Not only that, after we deployed our first model, we experienced a stale
problem that performance continued to decline. To solve this problem,
we started daily training, and as a result, we were able to solve the stale
problem (See Figure 2).

5 CONCLUSION

We suggest tabular learning models as CTR prediction for developing countries by explicitly shedding
some light on the relationship between tabular learning and CTR prediction task. The state-of-the-art
performance on eight public datasets and better results on online A/B test can be achieved at a low
cost with tabular learning models (especially gradient boosting) and the recent advance in categorical
feature encoding methods. In addition, our study provides room for improvement of applications
in developing countries under limited computing resources by showing that the state-of-the-art
performance is achieved with tabular learning models with the recent advance in categorical feature
encoding methods.

3Although we only report AUROC, Logloss shows similar trends.
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