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ABSTRACT

While the strong zero-shot performance of multilingual BERT has been shown to
drop in case of word order divergence between source and target language, the
problem has been studied rarely to date. In this paper, we explore light-weight
techniques to improve BERT-based zero-shot spoken language understanding for
English-Hindi, which are languages with divergent word orders. We show that
word order divergence can be tackled by reordering the source data to reflect tar-
get language word order. In particular, we study two computationally inexpensive
methods for re-ordering the source data to better match that of the target language:
one making use of slot label information, and another one making use of syntactic
parse trees. Our experiments show that the former, which is simpler and doesn’t
require any additional resources when compared to vanilla zero-shot transfer, can
obtain surprisingly large improvements on a real-world dataset.

1 INTRODUCTION

Spoken Language Understanding (SLU) models are essential for the development of voice-
controlled devices like Alexa or Google Home. The task of SLU can be typically divided into
two sub-tasks including intent classification (IC) to identify the user’s intent, and slot filling (SF) to
extract necessary semantic constituents. For instance, if a user requests “play madonna”, IC should
identify PlayMusic as the intent, while SF should classify the two tokens in the request “play” and
“madonna” as Other and Artist, respectively. Recently, as in many other language processing fields,
we have been observing the success of BERT-based models which jointly learn IC and SF labels by
leveraging pre-trained BERT representations (Chen et al., 2019).

Due to the growing success of natural language understanding (NLP) applications, porting NLP
models from a resource-rich source language to a new target language in a cost-efficient manner, i.e.
using little or no supervised target language data, has attracted an increasing interest in recent years.
For zero-shot scenarios, where no supervised training data is available in the target language, a
common approach is fine-tuning a pre-trained multilingual language model like multilingual BERT
(M-BERT, Devlin et al. (2018)), on the supervised training data of the source language and sub-
sequently applying the trained model on the target language. M-BERT has been shown to give
impressive zero-shot results across several NLP tasks (Wu & Dredze, 2019), including SLU (Xu
et al., 2020). However, while the cross-lingual performance of M-BERT in zero-shot scenarios is
generally strong, it suffers when word order diverges between source and target languages (Pires
et al., 2019). This is due to the fact that the linguistic patterns learned by a DNN are from the source
language, and therefore may not work well on the target language if word orders diverge. Notably
though, this problem gained attention only recently and has been studied rarely to date.

In this paper, we explore zero-shot transfer of SLU models from English to Hindi, which are two
languages with divergent word orders, for the use case of a voice-controlled device. In particular,
we fine-tune M-BERT on English SLU data as the downstream task, and subsequently apply the
resulting model on Hindi as the target language. Our goal is to improve the SLU performance on the
target language by tackling the issue of divergent word orders, which, to the best of our knowledge,
has not yet been addressed in the literature.
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Figure 1: SLU architecture.

The typical word orders in English and Hindi are SVO and SOV, respectively. To address word
order divergence, we aim to re-order the English source data to reflect the word order of the Hindi
target data. Intuitively, if the model has access to word order information of the target language
during training, zero-shot performance could be improved. We, therefore, investigate two simple and
computationally inexpensive reordering approaches: one which makes use of slot label information
based on the observation that user requests are often in imperative form, and another using syntactic
parse trees. The empirical results on a real-world SLU dataset show that the former can achieve
surprisingly large improvements on English-Hindi zero-shot SLU.

2 RELATED WORK

Various approaches have been proposed for few and zero-shot SLU, such as, using machine trans-
lated data (Gaspers et al., 2018) or pre-training a DNN on data from one or more source languages
(e.g. Do & Gaspers (2019); He et al. (2020)). The effectiveness of these approaches often depends
heavily on the linguistic similarity of the source and target languages. Recently, there has been a
rising effort in improving cross-lingual transfer between distant languages, for example, by tackling
differences at the linguistic/embedding level Johnson et al. (2019).

As one of the greatest recent successes in NLP, M-BERT has been shown to achieve relatively
strong zero-shot cross-lingual transfer learning performance for not only SLU (Xu et al., 2020)
but also many other NLP tasks. There have been several works investigating the weakness of M-
BERT and proposing techniques to improve BERT-based zero-shot models further. Cao et al. (2020)
proposed to align contextual word embeddings using parallel text or dictionaries. Pires et al. (2019)
showed that M-BERT performance may drop in case of distant source and target languages with
word order divergences. Liu et al. (2020) found that reducing word order information from the
source language improves zero-shot performance for downstream tasks. Motivated by these works,
we aim at addressing the issue of word order divergences to improve BERT-based zero-shot SLU
models. However, in contrast to Liu et al. (2020), we do not reduce only word order information
of the source language, but explicitly aim to model the target language word order. Moreover, our
approach does not require expensive resources like parallel text or dictionaries as in Cao et al. (2020).

One of the two reordering methods for SLU discussed in this paper, is based on syntactic parse trees.
This approach was previously used to address word order divergence to improve machine translation
Ramanathan et al. (2008); Murthy et al. (2019).

3 METHOD

In this paper, we explore M-BERT-based zero-shot transfer learning for SLU by explicitly reordering
supervised source utterances to better reflect the word order of the target language. In the following,
we first describe our BERT-based SLU model and subsequently two methods for reordering the
source data.

3.1 SLU MODEL

We use a common SLU architecture for joint intent classification and slot filling, which is depicted
in Fig. 1. It consists of a BERT encoder, an intent decoder and a slot decoder. The BERT encoder’s
outputs at sentence and token level are used as inputs for the intent and slot decoders, respectively.
The intent decoder is a standard feed-forward network including two standard dense layers and a
softmax layer on top. Meanwhile, the slot decoder uses a CRF layer on top of two dense layers to
leverage the sequential information of slot labels. During the training, the losses of IC and SF are
optimized jointly with equal weights (1.0:1.0).
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Figure 2: Example for re-ordering based on syntactic information for the use case of a transitive
verb; the figure is taken from Murthy et al. (2019).

3.2 REORDERING VIA SLOT LABELS

This simple method is based on the observation that English user requests sent to voice-controlled
devices are often in imperative form, implying that English utterances often start with a verb (VO –
subjects are omitted). To better reflect the Hindi word order (OV), we aim to move the verbs from
the beginning to the end of the English utterances. For this purpose, we make use of the available
slot values. Recall that for the slot filling task, semantic constituents are labelled in the supervised
data, which is available in the source language English in our case. In particular, each token in an
utterance is labelled either with a slot label, if it carries relevant slot information, or with Other,
if it does not carry slot information. However, tokens labelled with Other may contain important
information related to the intent.

Verb detection: Instead of using an extra sophisticated verb detection method, we make use of the
available slot labels. In particular, we observe that when the slot label signature of an utterance starts
with one or several Other(s), the corresponding token(s) often express the user intent, and include
the main verb of the utterance. Let us consider the previous example “play madonna” which has
intent label PlayMusic and slot label signature “Other Artist”. In this case, the token “play” has
assigned label Other, which is reserved for tokens which do not carry slot information. However, it
is in fact the main verb which expresses the intent referring to the expected device action.

Reordering: If a training utterance starts with a sequence of Other(s), we move the label sequence
and corresponding token(s) from the beginning to the end of the sentence. For instance, reordering
the previous example would result in “madonna play” with slot label sequence “Artist Other”. Since
user requests are typically rather short and follow a similar pattern, this simple method can capture
a large amount of utterances already.

3.3 REORDERING VIA SYNTACTIC PARSE TREES

In this approach, we adapt the work in the field of phrase-based (Ramanathan et al., 2008) and neural
(Murthy et al., 2019) machine translation to SLU. Roughly speaking, for an English utterance, a
syntactic parse tree is automatically created, and then hand-crafted rules are applied on top of it to
reorder the utterances to Hindi-typical SOV order. Fig. 2 provides an example for a re-ordering rule
and its effect on an example sentence. Further details can be found in Ramanathan et al. (2008).
Noticeably, unlike machine translation data used in Ramanathan et al. (2008); Murthy et al. (2019),
SLU data is labelled. We, therefore, re-order slot labels together with a sentence, i.e. each token
keeps its original label in the reordered version.

4 EXPERIMENTAL SET UP

4.1 DATASETS

Since we present a practical approach based on observations from real-world data, which to the best
of our knowledge are not reflected well in publicly available SLU datasets, we present results on real-
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world data. In particular, we extracted random samples, which are representative of user requests
to voice-controlled devices, from a large-scale commercial SLU system. The samples were suitably
anonymized and manually annotated with intent and slot labels. In particular, we use English and
Hindi data from six domains, i.e. HomeAutomation, Weather, Video, Music, Notifications and Books.
Data statistics are shown in Table 1; for each domain, we use the Hindi data for testing and split the
English data into 90% training and 10% validation data.

Domain # Enlish utt. # intents # slots # Hindi utt. # intents # slots
HomeAutomation 100,000 20 41 10,000 11 17
Weather 69,288 2 15 6,035 1 11
Video 13,208 19 44 4,520 9 39
Music 100,000 20 84 10,000 14 51
Notifications 100,000 19 41 10,000 10 18
Books 22,902 20 38 1,582 10 15
total 405,398 100 263 52,155 55 151

Table 1: Dataset statistics.

4.2 SETTINGS

We use pre-trained M-BERT (Devlin et al., 2018) (size 768), which is pre-trained on large amounts
of unlabelled texts from multiple languages, and max-pooling for sentence representation. Each of
our decoders, i.e. for IC and SF, has 2 dense layers of size 768 with gelu activation. The dropout
values used in IC and SF decoders are 0.5 and 0.2, respectively. For optimization, we use Adam
optimizer with learning rate 0.1 and a Noam learning rate scheduler. We trained our model for 50
epochs with batch size of 64. For evaluation, we use the standard metrics for SLU, i.e. F1 for SF and
accuracy for IC. In addition, following Gaspers et al. (2018), we use a semantic error rate, which
measures IC and SF jointly and is defined as:

SemER =
#(slot+intent errors)
#slots in reference + 1

(1)

5 EXPERIMENTS

For each domain, we build three SLU models using the English data:

• Baseline: The baseline model is obtained by training on the original English data.
• Reordering via slot labels: The utterances in the English data are reordered using slot label

information as described in Section 3.2. The model is then obtained by training on the
reordered English data.

• Reordering via syntactic parse: The English utterances are reordered using rules and syn-
tactic parse trees as described in Section 3.3. Syntactic parse tress are generated with the
Stanford parser Socher et al. (2013). We reorder labels accordingly, so that each token
keeps its original label. The model is obtained by training on the reordered English data.

Subsequently, we measure zero-shot performance for each model by applying it directly on the
corresponding domain’s Hindi test data. The results are presented in Table 5.

The results indicate that the simple approach based on slot label information is effective, yielding
consistent reductions in semantic error rate across domains of up to 30.16% and an average reduction
of 13.33% compared to the “baseline” zero-shot approach of training on the original English data.
The metrics for the individual sub-tasks reveal that it is mostly the SF task which benefitted. In
particular, slot F1 shows a large relative improvement of 15.47% on average, while the gain in intent
accuracy is rather small. This may be expected, as word order information seems to be much more
relevant for the sequence labelling task SF than for the easier intent classification task.

The, in general, more sophisticated method based on rules and parse-tree information yields mixed
results. That is, the method improves performance for certain domains and individual tasks, but
decreases performance for some others. For instance, for the Music domain, it achieved 22.0% and
1.62% relative gains in intent accuracy and slot filling, respectively.
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2*Domain Reordering via slot labels Reordering via syntactic parse
SemER Slot F1 IC acc. SemER Slot F1 IC acc.

HomeAutomation -13.54 12.17 0.0 +2.72 -1.4 +1.49
Weather -30.16 +20.1 +0.26 +9.12 -63.34 -0.07
Video -5.83 +9.68 -6.18 +0.94 +3.83 -13.17
Music -13.0 +22.12 +14.33 -1.98 +1.62 +22.0
Notifications -8.72 +11.83 +5.17 +1.17 -2.14 +4.6
Books -8.72 +16.94 -6.22 -7.47 +6.26 -0.79
Avg. -13.33 +15.47 +1.23 +0.75 -9.2 +2.34

Table 2: Relative change in semantic error rate (SemER), intent classification accuracy and slot F1
for zero-shot English-Hindi SLU for training on English training data with re-ordered word order
compared to training on the original English data as the baseline. Negative numbers indicate better
performance for SemER, while positive numbers indicate better performance for slot F1 and intent
classification accuracy.

6 DISCUSSION

The limited performance of the reordering method using syntactic information may due to the do-
main mismatch between our data and the Stanford parser’s training data. In particular, our dataset
comprises user requests in spoken form, which are on average rather short and often in impera-
tive form starting with a verb. By contrast, the Stanford parser was trained on written news texts
which typically comprise comparatively longer sentences which usually do not start with a verb.
We expect that an in-domain syntactic parser, which was not available for our experiments, could
potentially help to improve the performance of this syntax-based reordering method. Since standard
tools developed in Academia may not yield satisfying performance on specific industry datasets, we
cannot conclude that this reordering method is generally not useful. In fact, we would assume that
it could be quite effective when applied to datasets being closer to the parser’s training data domain.
Additional experiments are needed to determine in which scenarios gain can be expected and how
the approach can potentially be improved. For instance, additional rules for re-ordering based on
syntactic parse trees may be developed.

However, as shown with our other approach, large gains are also possible without any additional
linguistic or computational resources, making it in particular well suited for low-resource languages.
The large improvements obtained by reordering using slot label information also provide a first proof
of concept that slot labels are a useful source to address a particular word order divergence scenario.
In this paper, we have focused on a simple heuristic which already gave large improvements for zero-
shot transfer between English and Hindi. This heuristic may be useful for some other languages with
similar divergence, in particular for other Indian languages. For future work, another interesting
scenario would be investigating few-shot transfer, in which a (small) amount of supervised data
is available in the target language. In this case, it might be possible to learn automatically how
to re-order the source data by leveraging the slot label information in (aligned) source and target
utterances. This approach can be potentially applied to various word order divergence scenarios and
may be applicable for language pairs other than English-Hindi.

7 CONCLUSION

In this paper, we investigated two computationally inexpensive approaches for addressing word
order divergence for English-Hindi zero-shot SLU: one making use of slot label information, and
another making use of syntactic parse trees. We presented empirical results on a real-world SLU
dataset, showing that by using a simple, yet effective approach for reordering the English source
data, large improvements can be achieved. In particular, by reordering using slot label information,
consistent gains were achieved across data from six domains with up to 30.13% relative reduction
in semantic error rate and up to 22.12% relative gain in F1 for slot filling. This paper also provides
a first proof of concept that slot labels in supervised data can be used as a useful source to address a
particular word order divergence scenario in SLU. Future work may target additional scenarios, and
more sophisticated methods for leveraging slot label information may be developed.
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