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ABSTRACT

Poverty maps—spatial representations of economic wealth—are essential tools
for governments and NGOs to adequately allocate infrastructure and services in
places in need. They also help to better understand social phenomena such as
human mobility and segregation, and environmental problems induced by urban-
ization. Traditionally, such maps are inferred from Census and survey data, which
are expensive and collected occasionally; thus, they commonly provide outdated
and low-resolution socioeconomic information, especially in developing coun-
tries. Remotely sensed data combined with advanced machine learning methods
provided a recent breakthrough in poverty map inference. However, these models
are not optimized to produce accountable results that guarantee accurate predic-
tions to all sub-populations including the rich and the poor or the urban and rural
divide. In this paper, we touch upon the opportunities that multimodal data can
offer to solve these issues, as well as the challenges of working with noisy, biased
and sparse datasets for predicting high-resolution poverty maps in Sierra Leone.

1 INTRODUCTION AND RELATED WORK

The first Sustainable Development Goal set by the United Nations is to eradicate poverty by
2030 (United Nations, 2020). Although fewer people were living in extreme poverty around the
world by 2018, the decline in poverty rates has slowed down ever since. This stagnation was partly
due to the COVID-19 pandemic, but the ongoing impacts of conflicts and climate catastrophes set
further barriers for progress in this direction (World Bank, 2018). Traditional data collection tech-
niques, such as Census or survey methods, fail to follow the effects of such rapid changes, therefore
new data collection techniques are required to capture the aftermath of unexpected global-impact
events. The identification of places-in-need requires rapid, flexible and precise inference to inform
the adequate allocation of resources, which are often misplaced due to coarse-grained and out-dated
statistics provided by Census and survey data (Wisner et al., 2014).

The fast penetration of mobile phones worldwide (Adam & Minges, 2018; AG, 2017) set a precedent
for collection and use of big data for social good. Mobile usage data like call detailed records (CDR)
or mobile airtime payment transactions have been used to infer several socioeconomic aspects of
people (Dong et al., 2014; Gao et al., 2019; Cruz et al., 2021), which in turn were applied to map
socioeconomic effects on the structure and dynamics of the underlying social network (Eagle et al.,
2010; Leo et al., 2016; 2018). One main limitation of CDRs, however, is that mobile phone data is
proprietary and access is often granted via partnerships or purchase. On the contrary, the emergence
of Web 2.0 technologies has opened new avenues for collecting and sharing online annotations or
digital traces. In addition, open data initiatives have strengthen collaborations between industry,
academia and the public sector (Meta, 2022), which makes it easier to study social, economic and
environmental issues through the estimation of socioeconomic indicators from online data (Llorente
et al., 2015; Aletras & Chamberlain, 2018; Abitbol et al., 2018; Abitbol & Morales, 2021).

In recent years, satellite imagery has attracted great attention as a means of inferring high-resolution
poverty maps. As a first attempt, nightlight intensity of places has been shown to be a good estimator
of economic activity (Ghosh et al., 2010), especially for non-extreme-poor areas (Pinkovskiy &
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Table 1: Location data summary. Cluster locations are collected from the Demographics and
Health Survey program (DHS). Populated places are extracted from OpenStreetMap (OSM), and
they are rural if type ∈ {village, hamlet and isolated dwellings}.

TYPE OF PLACE COUNTS (%)
DHS clusters [2016, 2019] 893 [336, 557]
- urban 308 (34%)
- rural 585 (66%)
OSM Populated Places [2021] 9568
- urban 64 (0.70%)
- rural 9504 (99.3%)

Sala-i Martin, 2016). Moreover, they can even capture household consumption of the extreme poor
when combined with daylight satellite images (Jean et al., 2016). Other approaches leverage the
visual qualities of street-level imagery and daylight satellite images to detect objects (e.g., vehicles,
infrastructure, terrain) and use them as proxies of wealth of neighborhoods (Abitbol & Karsai, 2020;
Ayush et al., 2021; AyushBurak Uzkent et al., 2021). Since any geo-spatial dataset can be used to
build poverty maps via the spatial correlations of socioeconomic indicators, advanced deep learning
methods trained on multiple features (e.g., satellite images together with population density and
demographic data of people) provide scalable and better predictions of wealth at high-resolution for
low- and middle-income countries around the globe (Lee & Braithwaite, 2020; Chi et al., 2022).

While these methods represent a great advance towards scalable, time-variant and fine-grained
poverty maps, they commonly optimize performance over representativeness, and strongly depend
on the availability of all data sources. As a result, they might perform poorly in countries with scarce
data and fall short in accuracy guarantees necessary for policy makers. In addition, most of these
methods use machine learning algorithms, with good performance conditional to specific data en-
gineering and parametrization choices. This limits their generalization and transferability potential,
especially in countries in emergency undergoing rapid demographic and environmental changes.
Although the parametrization of these models are well documented, their robustness against data
scarcity and time is usually not evaluated.

We build towards this goal in this preliminary study, where we focus on Sierra Leone, a country
characterized by extreme poverty (World Bank, 2018; United Nations, 2020), and propose regression
models to predict wealth at ≈ 10K populated places from multiple online data sources. Using the
last two household surveys conducted in 2016 and 2019 in the Demographics and Health Program
(DHS) (The DHS Program, 2022a; Statistics Sierra Leone & ICF, 2016; 2020), we computed the
international wealth index (IWI) (Smits & Steendijk, 2015) of 893 localized population clusters
in the country. In addition, we extracted 172 metadata- and 784 image-features for each place
using openly available data from OpenStreetMap, OpenCelliD, Facebook Marketing API, Facebook
Data for Good, Google Earth Engine, and Google Maps Static API. We evaluate these sources
independently and in combination to highlight their importance and interchangeability during the
prediction. Our analysis sheds light on how to use open data to reliably infer high-resolution poverty
maps. We made our code openly available (Espı́n-Noboa, 2022).

2 DATA COLLECTION

Ground-truth wealth. DHS survey data (The DHS Program, 2022a) is commonly available at a
household level and can be aggregated into clusters covering between 4 and 44 households in Sierra
Leone. This granularity allows us to use it as ground-truth (GT) data to train and test machine learn-
ing models that predict the wealth (IWI) of places from the visual, infrastructural, or demographic
features of their surrounding areas. Table 1 shows some statistics of the 893 DHS clusters used in
this study. The majority of these clusters (66%) belong to rural areas, and their IWI scores vary from
4.2 to 72.7 with a mean of 26.2 and standard deviation of 15.6 1.

1The International Wealth Index (IWI) (Smits & Steendijk, 2015) is the first comparable asset based wealth
index covering the complete developing world and it ranges from 0 (extreme poor) to 100 (extreme rich).
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Target places. In order to infer a high-resolution poverty map, we extracted other 9568 populated
places. These locations were identified from OpenStreetMap (2022; 2021)(Mocnik et al., 2018) as
settlements representing cities, towns, villages, hamlets or isolated dwellings. Similar to the GT
data, the majority of these places (99.3%) are in rural areas (see Table 1).

Features. For each location we generated 172 metadata-features using six data sources. To extract
infrastructure details of a given place (e.g., schools, banks, roads, intersections, and cell towers) we
leveraged crowd-sourced data from two well known platforms, OpenStreetMap (2022) and Open-
CelliD (Unwired Labs, 2021). We extracted population and movement counts from Facebook data
for Good (Meta, 2022) and collected audience reach estimates (number of monthly active users of
given demographics) via the Facebook Marketing API (Meta, 2022). Nightlight-intensity related
features were extracted from the Google Earth Engine (Google, 2022). We generated additional 784
image-features using a convolutional neural network (CNN) on daylight satellite images downloaded
from Google Maps Static API (Google, 2022)2 (more details in Section 4.1).

3 CHALLENGES

Noisy ground-truth locations. Geo-located ground-truth data is often anonymized by adding noise
to the location to preserve the confidentiality of survey respondents (The DHS Program, 2022b).
While this is fundamental for ethical reasons, it induces uncertainty in the predictions. Previous
work addressed this issue by either covering bigger areas around each cluster (Chi et al., 2022),
or re-arranging locations in an iterative way while adjusting their wealth too (Lee & Braithwaite,
2020). While these options are plausible, it is unclear by how much they affected the prediction. We
propose to re-arrange the cluster locations only in rural areas, which are more likely to be surrounded
by non-populated places. We simply move the noisy location of a cluster to the location of the closest
populated place—obtained from OpenStreetMap (2021)—without altering its wealth index. In case
multiple clusters were assigned to the same populated place, we prioritized the cluster which had
fewer other potential matches. We repeated this iteratively until all rural clusters were re-arranged.
All displacements lie within the maximum boundaries of noise added to the original cluster location,
i.e., between 0 and 5 Km with 1% of clusters displaced by 0 to 10 Km (The DHS Program, 2022b).

Feature importance. When collecting features from multiple sources, it is important to understand
how useful each data source is at predicting the target variable. This allows to get rid of unimportant
features, or focus on the best ones when resources are limited and a full model cannot be trained.
We address this issue by comparing the performance of each data source alone and in combination.

Class imbalance. As shown in Table 1, the GT data is very skewed both in terms of wealth and
urban/rural places. These imbalances need to be taken into account during the modeling phase to
avoid misleading results and favoring the majority class. In this preliminary study, we show the
recall of our model at the intersection of these two dimensions.

Sample size and time mismatch across data sources. When using multiple data sources another
possible complication comes from the different times of recording of the different datasets. Here,
as GT data we used the last two available DHS surveys, which date back to 2016 and 2019. This
decision was not arbitrary. First, the performance of deep neural networks often improves with larger
amounts of training data. Second, we needed closest-to-date GT data to match the features collected
in 2021. However, the 2019 DHS data provided only 557 clusters, thus we opted to combine them
with the 336 clusters recorded in 2016 (see Table 1). This provided us a larger dataset for modeling
at the cost of matching old indicators of wealth with newer data features. We address these issues
by studying the effects of data augmentation and data recency on our models.

4 EXPERIMENTS

4.1 MODELS

Metadata (XGB). We built an XGBoost regressor model (Chen & Guestrin, 2016) to predict the IWI
score of DHS clusters. First, we extracted all 172 features for each cluster. Second, we partitioned

2Most datasets are publicly available except movement maps (available only for nonprofits and researchers
upon request) and satellite images (which can be reached through Google Academic Research Grants).
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Table 2: Performance by GT location: Re-
assignment of cluster locations to the closest
populated place improves the XGB model.

CONFIGURATION XGB
R2 MSE

Noisy 0.73 64.62
Re-arranged 0.83 41.86

Table 3: Performance by augmentation:
The CNN model improves when the images
in the training sample are augmented.

AUGMENTATION CNN
R2 MSE

None 0.72 68.72
Offline (18 techniques) 0.74 64.93

Table 4: Performance by feature source: Rows represent the seven data sources of interest:
Facebook Marketing API, OpenStreetMap, Google Maps Static API, OpenCelliD, Google Earth
Engine, Facebook Population, and Facebook Movement (between tiles prior COVID-19). For each
data source we extracted a set of features which were used to build one CNN and six XGB models.

SOURCE FEATURES (#) Model R2 MSE
FB-MA Audience reach (37) XGB 0.47 130.3
OSM Infrastructure (54) XGB 0.72 68.88
G-MS Daylight satellite images (784) CNN 0.74 64.94
OCI Cell towers (9) XGB 0.77 55.81
G-EE Nightlight intensity (36) XGB 0.79 52.47
FB-P Population density (9) XGB 0.81 47.59
FB-MV Movement maps (27) XGB 0.81 47.24
All (956) CNN+XGB 0.82 43.53

the data into train (80%) and test sets (20%). We further used the train set for a 4-fold cross-
validation, and tuned 13 hyper-parameters 3 via Random Search on 200 combinations.

Images (CNN). We train a second model that learns to predict IWI scores using daylight satellite
images. This model is based on a 22-layer linear regression Convolutional Neural Network (CNN)
architecture whose second last layer returns a 784-feature vector that is used to predict the final layer
with a linear activation. We use the same data splits as before, and tuned 4 hyper-parameters 4 via
Random Search on 200 combinations. Additionally, we applied 18 offline augmentation techniques 5

to 50% of the images in the training set to diversify our sample and reduce the risk of overfitting.

CNN+XGB: We feed the 784 features from the the second-last layer of the CNN to the XGB model
to verify whether the metadata- and image-features together produce the highest performance.

4.2 RESULTS

Using the best cross-validated model (with lowest mean root square error) we predicted the IWI of
DHS clusters in the test set using the XGB and CNN models separately. We measure performance
using R2 and mean-square-errors (MSE)6 The higher the R2 value (or lower MSE), the better per-
formance. Note that, for the purpose of comparison, the split of the data into train, validation and
test sets is the same across models. Also, all models carried out their own hyper-parameter tuning.

Re-arranging ground-truth locations (XGB). Table 2 shows the performance of our XGB model
using the noisy cluster locations and the proposed re-arrangement of locations. We see that perfor-
mance considerably improves when the rural clusters are moved to the closest rural populated place.
We used these re-arranged GT locations as the base for the following experiments.

Data augmentation (CNN). In Table 3 we see that the CNN model with augmented data outper-
forms by 2.8% the CNN model without data augmentation.

3n estimators, max depth, learning rate, booster, gamma, min child weight, max delta step, subsample,
colsample bytree, colsample bylevel, colsample bynode, reg lambda and tree method.

4learning rate, optimizer, dropout and batch size.
5flips, rotations, crops, rescaling, Guassian noise, brightness, darkness, and erasing.
6R2 represents the proportion of the variance for the IWI score being explained by the independent variables.

MSE refers to the average of the squares of the errors (between predicted and true values).
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Table 5: Recall of SES inference: The CNN model performs best in poor areas, while the XGB
model performs best in the rural-poor and urban-middle classes.

SES XGB CNN
ALL RURAL URBAN ALL RURAL URBAN

Poor 94% 97% 0% 98% 98% 100%
Lower middle 80% 20% 93% 67% 40% 73%
Upper middle 75% 0% 79% 55% 0% 58%

Table 6: Performance by time configuration: Training and testing on the most recent survey gives
the best performance followed by the combined model, which uses the last two surveys in both sets.

CONFIGURATION XGB CNN
Train → Test R2 MSE R2 MSE
Combined → Combined 0.83 41.86 0.74 64.94
Past (2016) → Future (2019) 0.77 57.14 0.70 75.87
2016 → 2016 (5 years to 2021) 0.78 53.94 0.61 95.07
2019 → 2019 (2 years to 2021) 0.85 36.27 0.76 61.82

Feature source. We see in Table 4 that while most of the features can provide relatively good
predictive performance, the mobility and population data from Facebook have the best features to
predict IWI scores. Moreover, while all features provide better performance (R2 = 0.82) than
individually (R2 ≤ 0.81), they are slightly worse than the metadata-only features (R2 = 0.83).

Sub-populations. We binned the true and predicted IWI scores into 4 socioeconomic classes7 sep-
arately to derive a confusion matrix. We found that our XGB (CNN) model achieves on average a
recall of 83% (73%) in terms of class prediction on all clusters in the test set, see Table 5. Moreover,
while our XGB model tends to predict very accurately the poorer in rural areas, and the richer in
urban areas, our CNN model predicts best the poor. Note that the 0% recall values in Table 5 are due
to the very small number of clusters in each class: 1 urban-poor and 4 rural-upper-middle clusters.

Train/Test time configuration. Using the re-arranged GT locations (and the augmented data for
the CNN model), we found that the recency of GT plays an important role in inference. We see in
Table 6 that training and testing on 2019 (the most recent data) outperformed the default combined
models that merge the surveys from 2016 and 2019 both for training and testing. Further research is
needed to mitigate the recency issue not only when multiple years of survey data are combined but
also when the most recent survey is not close-to-date.

5 CONCLUSION

In this preliminary study, we have touched upon the opportunities and challenges of inferring high-
resolution poverty maps with multimodal data. We addressed some of these issues by proposing
regression models that predict IWI scores from seven data sources, and adjust the train/test configu-
rations to correct for noisy ground-truth locations and time mismatch between wealth and features.
Our contributions are four-fold: (1) Our proposed re-arranging strategy outperforms the model with
noisy locations. (2) We demonstrated the importance of survey recency when features are not from
the same survey-year. (3) We found that population and mobility features are the strongest predic-
tors of wealth, providing alone comparable performances when all features are present. (4) Overall,
our models achieve high recall at a socioeconomic level. We found that satellite images are the best
for predicting the poor, while metadata-features are the best for predicting the rural-poor and the
urban-middle classes. As next steps we aim to explore the spatial and temporal transferability of
multi-source models with missing data layers at the target population and predict the variability of
IWI scores within clusters. Nevertheless, even these preliminary results shed light on the importance
of producing accountable models that guarantee accurate predictions to all sub-populations.

7[0-25) poor, [25-50) lower middle, [50,75) upper middle, and [75,100] rich. Note that there are no rich
places since the max IWI score in the GT is 72.7, see Section 2.
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