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ABSTRACT

Till now, attention-based models have been used with great success in the keyword
spotting problem domain. However, in light of recent advances in deep learning,
the question arises whether self-attention is truly irreplaceable for recognizing
speech keywords. We thus explore the usage of gated MLPs—previously shown to
be alternatives to transformers in vision tasks—for the keyword spotting task. We
provide a family of highly efficient MLP-based models for keyword spotting, with
less than 0.5 million parameters. We show that our approach achieves competitive
performance on Google Speech Commands V2-12 and V2-35 benchmarks with
much fewer parameters than self-attention-based methods.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have shown remarkable success in Computer Vision tasks with
the advent of the Vision Transformer (ViT) (Dosovitskiy et al., 2020). They have lately been studied
in the field of keyword spotting (KWS). Several works (Berg et al., 2021; Gong et al., 2021) have
obtained exceptional results with ViT-like approaches on KWS.

Recent research (Tolstikhin et al., 2021; Liu et al., 2021; Melas-Kyriazi, 2021; Touvron et al., 2021a)
shows that a core component of Transformers, self-attention, may not be necessary for achieving
good performance in vision and language tasks. This finding necessitates a study on whether MLPs
can be an alternative to self-attention, which has been a main focus of several state-of-the-art meth-
ods for the KWS problem. Our contributions can be summarized as follows:

1. We introduce the Keyword-MLP (KW-MLP), a memory-efficient, attention-free alternative
to the Keyword Transformer (KWT) (Berg et al., 2021). It achieves 97.63% and 97.56%
accuracy on the Google Speech Commands V2-12 and V2-35 benchmarks (Warden, 2018)
respectively—showing comparable performance to the KWT, while having much fewer
parameters.

2. We distill smaller and shallower versions of KW-MLP, with the smallest having only 0.213
million parameters, and accuracies of 97.12% and 97.17% on Google Speech Commands
V2-12 and V2-35 benchmarks respectively.

2 RELATED WORK

2.1 KEYWORD SPOTTING

Keyword spotting (KWS) deals with identifying some pre-specified speech keywords from an audio
stream. As it is commonly used in always-on edge applications, KWS research often focuses on
both accuracy and efficiency. While research in keyword spotting goes back to the 1960s (Teacher
et al., 1967), most of the recent and relevant works have been focused on the Google Speech Com-
mands dataset (Warden, 2018), which has inspired numerous works and has rapidly grown to be the
standard benchmark in this field. The dataset contains 1 second long audio clips, each containing an
utterance of a word. Notably, there are two versions, V1 and V2, consisting of 30 and 35 keywords
respectively. There is also a 12 keyword task for either version, where it is required to identify 10
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keywords and two additional classes, ‘silence’ and ‘unknown’ (containing instances of the unused
keywords).

Initial approaches to keyword spotting on the speech commands consisted of convolutional models
(Warden, 2018). Majumdar & Ginsburg (2020), Mordido et al. (2021) and Zhang & Koishida (2017)
proposed lightweight CNN models with depth-wise separable convolutions. de Andrade et al. (2018)
proposed using a convolutional recurrent model with attention, introducing the usage of attention in
the KWS task. Rybakov et al. (2020) proposed a multi-headed, self-attention-based RNN (MHAtt-
RNN). Vygon & Mikhaylovskiy (2021) proposed an efficient representation learning method with
triplet loss for KWS. While the state of the art in KWS at that time was the method of Rybakov
et al. (2020), it was empirically seen that triplet loss performed poorly with RNN-based models.
The authors later obtained excellent results with ResNet (Tang & Lin, 2018) variants.

Recently, Berg et al. (2021) and Gong et al. (2021) proposed the Keyword Transformer (KWT) and
Audio Spectrogram Transformer (AST) respectively. Both approaches are inspired by the success
of the Vision Transformer (ViT) (Dosovitskiy et al., 2020), and show that patch-based transformer
models with self-attention can obtain state of the art or comparable results on the keyword spotting
task. A key difference between these two transformer approaches is that AST uses ImageNet (Deng
et al., 2009) and Audioset (Gemmeke et al., 2017) pre-training. Furthermore, the best performing
KWT models are trained with attention-based distillation method (Touvron et al., 2021b) using a
teacher MHAtt-RNN (Rybakov et al., 2020).

2.2 MLP-BASED VISION

The Vision Transformer (Dosovitskiy et al., 2020) has thus far shown the remarkable capability
of Transformers on image and vision tasks. However, several recent works have questioned the
necessity of self-attention in ViT. Melas-Kyriazi (2021) directly raises the question on the necessity
of attention, and shows that the effectiveness of the Vision Transformer may be more related to
the idea of the patch embedding rather than self-attention. Tolstikhin et al. (2021) proposed the
MLP-Mixer, which performs token mixing and channel mixing on image patches/tokens, and shows
competitive performance on the ImageNet benchmark. Touvron et al. (2021a) showed similarly good
ImageNet results with ResMLP, a residual network with patch-wise and channel-wise linear layers.
Liu et al. (2021) proposed the gMLP, consisting of very simple channel projections and spatial
projections with multiplicative gating—showing remarkable performance without any apparent use
of self-attention.

3 KEYWORD-MLP

Inputs to KW-MLP consist of mel-frequency cepstrum coefficients (MFCC). Let an arbitrary input
MFCC be denoted as X ∈ RF×T , where F and T are the frequency bins and time-steps respectively.
We divide X into patches of shape F × 1, getting a total of T patches. Each patch is effectively a
vector of mel-frequencies for a particular time-step.

The T patches are flattened, giving us X0 ∈ RT×F . We then map X0 to a higher dimension d, with
a linear projection matrix P0 ∈ RF×d, getting the frequency domain patch embeddings XE .

XE = X0P0 (1)

The obtained XE is passed through L consecutive, identical gated-MLP (gMLP) blocks (Liu et al.,
2021). On a high level, we can summarize the gMLP blocks used in KW-MLP as a pair of projec-
tions across the embedding dimension separated by a projection across the temporal dimension. The
block can also be formulated with the following set of equations (omitting bias and normalization
for the sake of conciseness):

Z = σ(XinU)

Z̃ = g(Z) = g([ZrZg]) = Zr ⊙ (ZT
g G)T

Xout = Z̃V ⊕Xin

(2)
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Figure 1: The Keyword-MLP architecture, consisting of L blocks (equation 2). Note that we move
the LayerNorm to the end, before the skip-connection, different from Liu et al. (2021) where norm is
applied at the beginning. (⊕ represents a residual skip-connection, while ⊙ represents element-wise
product.)

First, we use the matrix U ∈ Rd×D to linearly project Xin from the embedding dimension d to
the projection dimension D (essentially a matmul operation). σ represents the GELU activation
function. g(Z) represents the the Temporal Gating Unit (TGU) shown in Figure 1. The input to
TGU, Z, is first split into Zr and Zg ∈ RT×D/2, the residual and the gate respectively. We use
the matrix G ∈ RT×T to performs the linear projection across the temporal axis. This is followed
by the linear gating—an element-wise multiplication with the residual Zr. While the temporal
projection operation can be implemented as passing Zg transposed through a Dense(T, T) layer,
in practice, it can be implemented more efficiently by instead passing Zg through a Conv1D(T,
T, 1) layer. Z̃ ∈ RT×D/2 is projected back to the embedding dimension d with the matrix V and
then added with the skip-connected input Xin.

The original gMLP paper (Liu et al., 2021) applies LayerNorm before the initial channel projection
(analogous to embedding projections for images). We however find that applying norm after the
second embedding projection results in a notably faster and more optimal convergence. Berg et al.
(2021) also observe a similar phenomenon in their work.

The overall system is shown in Figure 1. In KW-MLP, we primarily use L = 12 (12 consecutive
gMLP blocks), embedding dim d = 64, and projection dim D = 256. We also explore a group of
smaller KW-MLP models with shallower depth, i.e. L = 10, 8, 6. The input MFCCs to the model
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are of shape 40× 98, where 40 is the number of frequency bins, and 98 is the number of timesteps.
All settings are also shown in Table 2.

It is to be noted that the largest KW-MLP model has only 0.424M parameters, which is smaller than
the smallest KWT variant (KWT-1 with 0.607M params) and much smaller than AST models (87M
params). However, from Table 1 we can see that KW-MLP shows competitive accuracy with these
models, particularly on the Speech Commands V2-35 benchmark.

3.1 KNOWLEDGE DISTILLATION

In order to boost the accuracies of shallower KW-MLP variants, we use knowledge distillation (KD)
(Hinton et al., 2015), using the KW-MLP model with L = 12 as the teacher model. We use an
annealed KD approach (Jafari et al., 2021) where the temperature parameter decreases every step
following a cosine-annealing rule till it reaches 1. Other KD parameters, such as alpha, are shown
in Table 2. We also do not use label smoothing when training with KD, as soft targets are obtained
from teacher predictions.

Table 1: Comparison of Model Parameters and Accuracy on Google Speech Commands V2-12 and
V2-35 benchmarks (Warden, 2018)

Method Extra Knowledge V2-12 V2-35 # Params (M)
Att-RNN [2] 96.9 93.9 0.202
Res-15 [21] 98.0 96.4 0.237
MHAtt-RNN [14] 98.0 97.27 0.743
AST-S [6] Pre. ImageNet 98.11 87
AST-P [6] Pre. ImageNet & Audioset 97.88 87
KWT-3 [1] KD with MHAtt-RNN 98.56 97.69 5.361
KWT-2 [1] KD with MHAtt-RNN 98.43 97.74 2.394
KWT-1 [1] KD with MHAtt-RNN 98.08 96.95 0.607
KWT-3 [1] 98.54 97.51 5.361
KWT-2 [1] 98.21 97.53 2.394
KWT-1 [1] 97.72 96.85 0.607
KW-MLP 97.63 97.56 0.424
KW-MLP10 97.38 97.35 0.353
KW-MLP8 97.28 97.26 0.283
KW-MLP6 97.03 97.07 0.213
KW-MLP10 KD with KW-MLP 97.30 97.49 0.353
KW-MLP8 KD with KW-MLP 97.24 97.45 0.283
KW-MLP6 KD with KW-MLP 97.12 97.17 0.213

4 EXPERIMENTAL DETAILS

We follow similar hyperparameters to Rybakov et al. (2020); Berg et al. (2021), with minor changes;
all our hyperparameters and settings are shown in Table 2. For training, we use a smaller batch-size
of 256, and train for 140 epochs. No other augmentation apart from Spectral Augmentation (Park
et al., 2019) is applied (to enable fast training). As an additional regularization method, each gMLP
block has a survival probability of 0.9 (alternatively, a 0.1 probability to drop each block). We run
experiments on Google Speech Commands V2-12 and V2-35 benchmarks, following the standard
protocol described in Warden (2018).

As seen from Table 1, the largest KW-MLP model has only 424K parameters, which is much fewer
than the KWT models, while having comparable accuracy. Furthermore, since we do not apply
expensive run-time augmentations like resampling, time-shifting, adding background noise, mixup,
etc. (used by (Rybakov et al., 2020; Berg et al., 2021; Gong et al., 2021)), it is possible to train
KW-MLP models in a very short time on free cloud compute such as the NVIDIA Tesla K80 or
Tesla P100 provided by Google Colab and Kaggle.

As a trade-off for fast training, a limitation of the KW-MLP experiments is that the effect of various
augmentation methods have not been explored. This is more apparent in the V2-12 task, which
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contains much fewer training examples (∼ 37000) than the V2-35 task (∼ 84000). The KW-MLP
model does not generalize as well here, as compared to V2-35.

Table 2: Overview of Hyper-Parameters and Settings
Training Augmentation Model

Epochs 140 # Time Masks 2 # Blocks, L 12
Batch Size 256 Time Mask Width [0, 25] Input Shape 40× 98
Optimizer AdamW # Freq Masks 2 Patch Size 40× 1

Learning Rate 0.001 Freq Mask Width [0, 7] Dim, d 64
Warmup Epochs 10 Dim Proj. 256

Scheduling Cosine # Classes 35
Regularization Audio Processing KD

Label Smoothing 0.1 Sampling Rate 16000 α 0.9
Weight Decay 0.1 Window Length 30 ms Init Temp 5.0

Block Survival Prob. 0.9 Hop Length 10 ms
n mfcc 40

5 TEMPORAL PROJECTION MATRICES

We additionally visualize the weights of the temporal gating unit (the temporal projection matrix
G ∈ RT×T in equation 2). Interestingly, we can observe that our model learns weights which seem
similar to diagonal, identity, or toeplitz matrices. This suggests that KW-MLP may partially learn
a form of shift-invariance, which is necessary for the keyword spotting task. For instance, in a 1
second audio clip, a keyword can occur at different temporal positions; so the model needs to be
invariant to temporal shift.

Figure 2: Visualization of the temporal projection matrices, G, for each of the L = 12 gMLP blocks
of KW-MLP. The matrices are arranged in row major order.

6 CONCLUSION

The Keyword-MLP has shown itself to be an efficient solution to the keyword spotting task, and an
alternative to self-attention-based methods. We hope that we provide an additional avenue of future
research in audio and speech domains, particularly when resource-efficiency is concerned.
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