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ABSTRACT

The human upper nasal airway is an anatomical structure with a complex ge-
ometry that performs essential functions required by the rest of the respiratory
system. An accurate and precise segmentation process that captures its intricate
shape and variability becomes indispensable to fully understand its performance
under different circumstances and to study its anatomy from multiple perspec-
tives. As currently performed, the manual or semi-automatic segmentation process
for these structures is extremely time-consuming, may demand extensive man-
ual post-processing steps to correct over-or under-segmentation, and is subject to
considerable intra- and inter-operator variance. Further, in developing countries,
healthcare institutions modernize their medical imaging devices at different rates;
thus, specialists and proposed solutions have to deal with a wide range of image
characteristics and quality variability to execute their diagnostics. In this paper
we develop an automatic segmentation strategy for the human upper nasal airway,
based on a deep convolutional network trained with >3000 CT scans acquired
from different devices of a national hospital in Argentina, Hospital Italiano de
Buenos Aires (2010). This process achieves a remarkable preliminary results with
a low error rate (0.07%) and an acceptable similarity score (86.9%).

1 INTRODUCTION

One of the main anatomical components of the respiratory system is the upper nasal airway. It per-
forms essential tasks such as conditioning the air before reaching the lungs by regulating its humidity
and temperature, or filtering out dust and other potentially dangerous particles. Because of this, it
has a complex morphology and presents a wide variability across different ethnic groups and indi-
viduals (Huang et al., 2019). In different contexts (clinical or scientific), it is quite useful to analyze
geometric representations of this structure (2D or 3D) to understand its functioning process and how
it would behave under specific circumstances. Current approaches can perform this task only semi-
automatically, requiring operators with wide experience adjusting the initialization parameters and
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structures. In addition, after this semi-assisted segmentation is performed, an even more complex
post-processing step is require to remove misclassified regions that arise due to limitations and mis-
takes inherent to the segmentation procedure. This represents a costly and time consuming process,
and can be a daunting task when scans of several individuals must be processed. In particular, the
usual feature engineering methods are error-prone due to the complex and sometimes unpredictable
shape of this structure. Moreover, several sections of the human skull that participate in the image
acquisition present similar intensity levels as the target structure, both in CT and MRI imaging,
which gives rise to hard to circumvent difficulties in border detection (Kabaliuk et al., 2017; Huang
et al., 2016). As a result, traditional segmentation processes may create masks that present con-
siderable amounts of under-or over-segmentation, misrepresenting the real shape of the anatomical
structure. In addition, an adequate geometric representation may provide stable features that allow
population-wise studies and other research activities that require individual-specific models (Heuzé,
2019; Cellina et al., 2020; Nejati et al., 2016; Deng et al., 2018a). Particularly in Latin America,
population-wise studies would allow further understanding of the role of environmental and genetic
factors in relation to different health conditions (Dopazo et al., 2019).

On the other hand, recent advances in Deep Learning (DL) yield a variety of neural network archi-
tectures for similar segmentation and recognition purposes in 2D and 3D image processing (Badri-
narayanan et al., 2017; He et al., 2017). With appropriate training and validation procedures, DL was
successfully applied in diverse medical imaging contexts, being able to adequately perform complex
segmentation tasks, identify elaborate targets, and detect anomalies in different kind of anatomical
structures and tissues (Ait Skourt et al., 2018; Dong et al., 2011) among other tasks. In this work, we
propose the use of a modified version of a convolutional neural network (CNN) that automates the
process of segmentation of the upper nasal airway. The presented approach aims to automatically
create a 2D representation of the anatomical structure without requiring prior experience or manual
assistance, providing reproducible results with minimal error.

2 RELATED WORK

Many techniques and methodologies have been proposed recently to address segmentation and ge-
ometric reconstruction of the human nasal cavity. Cercos-Pita et al. (2018) presented a tool that
combines many of the traditional image processing techniques to achieve a complete 3D representa-
tion of the anatomic structure. In a multi-step process, the proposed tool is able to filter metal noise,
segment each slice, subtract undesired portions of pixels/voxels that do not belong to the cavity, and
lastly, close the holes in the 3D model to create a watertight representation of the structure. Bui
et al. (2015) proposed a multi-step level-set framework to automatically segment nasal cavity and
paranasal sinuses, creating 3D models of the structure. The process involves the use of thresholds
and mathematical morphology operators to locate the RoI, a global active contour process guided by
a level-set framework to segment the structure, and localized active contour processes to refine the
results. Similarly, Neelapu et al. (2017) developed an algorithm to extract the VoI by automatically
identifying landmarks in the structure and initializing the active contour segmentation process. The
proposed algorithm presented problems when boundary limits for segmentation regions were not
precisely defined. Other authors (Dastidar et al., 1999; Seo et al., 2010; Deng et al., 2018b) have
presented semi-automatic approaches to create segmentations for the nasal cavity combining tradi-
tional methods. Although the above mentioned works may achieve good results in some cases, they
have limitations and drawbacks due to their semi-supervised nature. Some of them require expert
intervention to set and adjust the initial parameters, which, as shown in Cercos-Pita et al. (2018),
yields biased results when the human operator is not very experienced.

On the other hand, multiple neural network architectures have been designed in order to create
segmentations for different kind of tissues, tumors and lesions (Ait Skourt et al., 2018; Dong et al.,
2011; Suzuki, 2017; Harrigan et al., 2014). For the upper nasal cavity in particular, Xie et al.
(2021) have developed a similar approach to the proposed in this work, obtaining 2D as well as 3D
representations of the structure, although it was designed to work with MRI instead of CT Scans.
Qin et al. (2019) created an architecture that exploits image features in CT Scans to predict airway
connectivity by learning the relationship between voxels creating a 3D model of the lower region
of the airway. However, DL based methods tend to perform poorly when the models are tested
with datasets that lack diversity. Training with images acquired with different devices will allow
the algorithms to deal with image acquisition variance, such as uneven quality, different resolution,
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Figure 1: U-Net architecture. The descending path (left) contains contracting operations while
the ascending path (right) expands the obtained features to create the segmented mask. Missing
information is gathered from skip connections (grey arrows) to achieve better results.

and varying noise levels. Our work proposes an automatic DL method trained and tested with
a population-specific dataset (Argentina) with images captured with different devices with ranging
image quality input data. The proposed approach performs accurately under the mentioned scenarios
while maintaining a low error rate.

3 DEEP LEARNING BASED SEGMENTATION MODEL

We propose an automatic approach to segment the anatomical structure, providing a cost-effective
solution to the problems mentioned without requiring great effort to use. For this, we applied the U-
Net (Ronneberger et al.) architecture, which was successful in other segmentation tasks on medical
images. The U-Net model is characterized by three sections: a descending path, the encoded data
and an ascending path (Fig. 1). The dataset is composed by a total of 3100 slices of CT and CBCT
scans of human skull in DICOM format from a group of 100 people (64 female, 36 male from
ages between 19 and 97) from a national healthcare institution in Buenos Aires. These scans were
acquired with different devices under their own individual settings providing images with a diverse
set of attributes as mentioned in previous sections of this work. Every CT sequence was further
analyzed to only keep the slices in which the nasal cavity was present. The remaining slices were
not used nor manually segmented for the training process. The dataset also includes a binary mask
for every slice, created manually under the supervision of an expert. Each mask contains black
pixels to represent the background and white pixels for the area of interest. Both the dataset and the
architecture will be made available by the time of publication.

3.1 IMPLEMENTATION DETAILS

We used Python 3.8 1 and the Pytorch 1.7 2 library to clean and prepare the dataset as well as to
implement and train the neural network. As the optimizer for our model, we used Adam Kingma &
Ba (2015) with the following hyperparameters: learning rate = 1e− 5, weight decay = 1e− 3
beta1 = 0.6 and beta2 = 0.999. Each training batch was composed of 15 images DICOM and their
correspondent binary mask. The U-Net model was trained 500 epochs for approximately 6 hours
on a PC with a Nvidia GTX 1070 GPU, an Intel i7-7700 CPU and 16GB of RAM. To quantify the
segmentation error of our neural network, we used Binary Cross Entropy (BCE) as our loss function
given the binary nature of our expected outputs.

L = − 1

n

n∑
i=1

yi ∗ log ŷi + (1− yi) ∗ log(1− yi) (1)

1https://www.python.org/
2https://pytorch.org/
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Table 1: Test Results

Metric DeepLabv3 (ResNet50) DeepLabv3 (ResNet101) Our Method
BCE 0.034 (+/- 0.013) 0.033 (+/- 0.012) 0.007 (+/- 0.001)
DSC 0.659 (+/- 0.085) 0.656 (+/- 0.079) 0.869 (+/- 0.063)
Precision 0.244 (+/- 0.132) 0.242 (+/- 0.133) 0.715 (+/- 0.102)
Recall (Sensitivity) 0.982 (+/- 0.046) 0.981 (+/- 0.050) 0.936 (+/- 0.073)
Specificity 0.983 (+/- 0.006) 0.983 (+/- 0.006) 0.996 (+/- 0.001)
False positive rate 0.016 (+/- 0.006) 0.016 (+/- 0.006) 0.003 (+/- 0.001)

Where L is the error or loss, ŷi is the i-th value in the model output, yi is the corresponding target
pixel value (0 or 1), and n is the output vector size. Optimal values for L are close to 0.

To measure how close the predicted masks are against the ground truth, we applied Dice Coefficient
(DSC)

DSC =
2|X ∩ Y |
|X|+ |Y |

, (2)

where DSC is the Dice coefficient for the inputs, X and Y represent the predicted output mask
and the expected mask accordingly. During implementation, we added an extra term to provide
numerical stability. Optimal values for DSC are close to 1.

We scaled down the size of the images to 256×256 px (half of its original size) and normalized their
values to be between 0 and 1. We also applied data augmentation to extend the size of our dataset
by introducing random transformations to the input images during training. The initial dataset was
divided in 3 subsets with the following proportions: training 70%, validation 10% and testing 20%.
The training set was used to modify the weights and parameters of the model, using the validation
set after each batch of training images to ensure the learning process its executing correctly or use
it as an early-stopping point. Finally, the testing set was used to evaluate the trained model against
images never seen during training and to calculate the performance metrics.

4 RESULTS

During the experimental phase, we used the testing set of data composed by 219 images. For each
image, we calculated both Binary Cross Entropy Loss (BCE) and Dice Coefficient (DSC). Addition-
ally, we also measured Precision, Recall, Specificity and False positive rate. To compare results we
trained and evaluated another Deep Learning-based model designed for semantic segmentation pur-
poses, DeepLabv3. We analyzed the performance on two of its variants: DeepLabv3 with ResNet50
backbone and DeepLabv3 with ResNet101 backbone (See Table 1). Although the results in Fig. 2
demonstrate that DeepLabv3 predictions are close to the overall shape of the structure with both
variants, it can be noted that several critical features are missing from the segmentation. In contrast,
our method achieves segmentation masks with high level of detail, capturing in most cases an almost
exact shape of the structure when compared to manually segmented masks.

5 DISCUSSION AND CONCLUSION

Our proposal achieves high similarity scores when compared with manually created segmentations,
and maintains a low error rate. However, the model may not perform as expected when a complete
sequence of CT slices are given as input. This is due to the fact that to avoid the imbalance problem
we intentionally left out slices that did not contained the region of interest. As a result, the neural
network was not trained to learn to select which slices contain or not portions of the region of
interest as well as to filter metal noise or other potential image perturbations. This problem can be
easily solved in combination with other algorithms or networks, classifying which slices need to be
segmented beforehand as well as filtering noise or removing perturbations. Another limitation is
that the model presents under-segmentation results when the portions of region of interest in a slice
are too small.
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DICOM Ground Truth Deeplabv3 (ResNet50) Deeplabv3 (ResNet101) Our Method

Figure 2: From left to right: DICOM original slices, Ground truth masks, DeepLabv3 (ResNet50)
prediction masks, DeepLabv3 (ResNet101) prediction masks and Our method’s prediction masks.

Although the presented results may be valid for 2D analysis, we plan to work in a 3D implementation
to complete the framework and for it to be ready to use in the real world. This approach can be the
basis of novel computational tools aimed to improve several processes related to surgical procedures
that can be simulated in silico prior to the intervention itself among other scenarios in daily medical
practice, optimizing planning time and reducing the overall cost of such procedures.

Finally, we aim to implement the mentioned algorithms in the near future integrating them with the
presented architecture in a framework that automates the whole process.
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