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ABSTRACT

In India, the majority of farmers are classified as small or marginal, and their liveli-
hoods are vulnerable to climate risk. One approach to mitigating this problem is
via drip-irrigated greenhouses. We aim to build an optimization-based decision
support tool that provides crop planning advice to farmers in conjunction with
a nonprofit in India. We propose a Markov decision process approach for this
low-resource sector, and discuss key evaluation metrics for the design and imple-
mentation phases of our project.

1 INTRODUCTION

In India, five out of six farmers are classified as small or marginal, with two or fewer hectares of
arable land (FAO, 2022). In 2013, the National Sample Survey Office (NSSO)’s survey of India’s
agricultural households reported two-thirds of the one hundred million small farmers in India lose
money on average from agriculture alone (NSSO, 2013).

A large reason for that is climate risk, made worse by climate change. Recently, India has experi-
enced a rise in average temperatures, a decrease in monsoon precipitation, a rise in extreme temper-
ature, rainfall and drought events, an increase in intensity of severe cyclones and other changes in
the monsoon system (Krishnan et al., 2020). Kharif crops are cultivated and harvested during the
Indian subcontinent’s monsoon season. These crops are most affected by rainfall variance, while
winter-planted rabi crops face challenges in higher minimum temperatures. Winter rabi crops re-
quire significant irrigation (Rosmann & Singh, 2021). Unfortunately, resource-poor farmers have a
limited ability to adopt sustainable resource technologies.

One approach to mitigating this problem is via a “greenhouse-in-a-box” that is highly affordable
(Peters, 2017). These greenhouses are equipped with a low-cost drip irrigation system that reduces
water use (Polak et al., 1997). Another benefit of protected cropping is the ability to maintain a
controlled growing environment in warm climates, reducing vulnerability to seasonal temperatures
and humidity (Rabbi et al., 2019).

Still, greenhouse hardware alone is not enough because farmers lack the ecosystem to make that
hardware work. Specifically, giving farmers help in planning their crops well can make a huge
difference (Vinaya Kumar et al., 2017). Currently, farmers do not follow scientific, data-backed
approaches when making their crop planting choices and cycles, nor do they necessarily aim to
maximize utility (Sanga et al., 2021; Waldman et al., 2020). Rather, farmers rely on heuristic
shortcuts and social norms when facing uncertainty. Heuristics such as timing the sowing of rice
crops according to the onset of monsoon season are particularly valuable for marginal farmers, for
whom alternative strategies such as increased irrigation are unobtainable (Jain et al., 2015). The role
of social interactions is pervasive in the region, for example, Mittal & Mehar (2013) find that an
overwhelming 90% of North Indian farmers rely on information provided by neighboring farmers
(Munshi, 2004; Mittal & Mehar, 2013; Bhatta et al., 2017). However, if farmers choose to emu-
late their successful peers in making crop choices, the local markets may be flooded with a fairly
homogeneous mix of in-season vegetables and fruits, creating a glut and depressing prices.

In collaboration with a nonprofit in India, we aim to build optimization-driven decision support
tools to enable that ecosystem for small farmers. We are in a unique position to provide lightweight
coordination across small farmers, in the process providing concrete planting advice to individual
farmers based on local market data as well as farmer-level constraints such as budget, behavioral
preferences, and appetite for risk–thus helping individual farmers and the broader local economy.
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2 PROBLEM STATEMENT

We aim to create an optimization-based decision support tool that provides crop planning recom-
mendations to farmers based on market price data, factoring in long-term soil fertility and farmers’
skill levels, and other application-specific constraints. Specifically, we will define a crop portfolio
optimization problem that takes as input heterogeneous data (social/historical related to a farmer
and their community; environmental and ecological; and financial, including historical local market
prices) and provides as output a slate of crops to plant over time. Leaning on the sequential deci-
sion making under uncertainty literature, our approach will be amenable to user-specific objective
functions (e.g., maximize expected profit, maximize expected profit subject to a particular appetite
for risk, etc.) as well as various application-specific constraints (e.g., budget constraints, farm sizing
and number of crops). One key constraint is maintaining soil fertility–the same type of crop should
not be planted sequentially to preserve the nutrients in the soil.

3 A MATHEMATICAL APPROACH

We will begin by formulating the problem as a Markov decision process (MDP) (Bertsekas, 2012).
Many optimal control problems in agriculture have been considered with this model, for example
in disease control (Viet et al., 2018) and rainfall-based irrigation (Huong et al., 2018; Whan et al.,
1976; Admasu et al., 2014). Here, states represent current circumstances. At a given timestep the
agent takes an action. This action causes some changes in the environment and, depending on the
changes that take place, gives some reward. Given the new state, the agent takes an action at the
next timestep, repeating the process over and over again. By formulating the problem in this way,
we can mathematically solve for the most optimal action at each timestep.
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Figure 1: Example MDP for crop planting decision support.

In the example shown in Figure 1, the cur-
rent state is an empty greenhouse. We, the
agent, have many options for actions, such
as planting tomatoes, potatoes, or corn.
Let us suppose we plant potatoes. The
state becomes: a greenhouse with 10 un-
ripe potatoes in the current season. While
the potatoes grow, no profit is earned (in
fact, we may incur some small costs). It
is probably unwise to harvest the potatoes
before they are mature, so in this example,
the agent waits. After some time, the pota-
toes are mature and we harvest them. Sell-
ing the potatoes yields a profit of one thou-
sand rupees. Now, we once again have an
empty field and we need to decide what to
plant. However, to maintain soil fertility, we will not plant potatoes.

We have to be careful that the number of combinations is not intractably large. Even though there
are many possible situations, the sequential progression of the environment over time is often pre-
dictable. A key part of our plans is to address the efficiency and frequency of computing optimal
actions using this model, and adapting our solution to emergent information such as changes in crop
price. Depending on the availability of data and the results of preliminary evaluation, a reinforce-
ment learning approach may be appropriate (Sutton & Barto, 2018).

4 EVALUATION & FUTURE DIRECTIONS

In the short-term, we aim to develop a minimum viable product under close collaboration with our
partners in India. Since the lifecycle of crops is between 70 and 200 days, we plan to incorporate
interviews with stakeholders (i.e., small farmers who are part of the nonprofit’s ecosystem already)
in the early stages of development. Additionally, long-term success can be measured in multiple
ways including, ordered by length of time: (1) calculating the increases in farmer incomes; (2) over
multiple crop cycles, calculating differences in soil fertility based on pH levels; and (3) conducting
a proper randomized control trial (RCT). First, we will identify comparable farmers growing similar
crops in their greenhouses, and will offer them the proposed additional advisory on crop planning.
At the end of the first season, we would be able to see the difference in incomes between the two
farmer groups. Then, we can compare open air farming, greenhouse farmers without the proposed
decision support tool, and greenhouse farmers with the proposed tool over several seasons.
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