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ABSTRACT

Training deep networks on large datasets is computationally intensive. One of
the primary research directions for efficient training is to reduce training costs
by selecting well-generalizable subsets of training data. Our key insight is that
removing the reliance on downstream model parameters enables subset selection as
a pre-processing step and enables one to train multiple models at no additional cost.
In this work, we propose MILO, a model-agnostic subset selection framework that
decouples the subset selection from model training while enabling superior model
convergence and performance using an easy-to-hard curriculum. Our empirical
results indicate that MILO can train models 3 × −10× faster than full-dataset
training without compromising performance.

1 INTRODUCTION
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Figure 1: Sub-figure (a) and Sub-figure
(b) show convergence of the ResNet18
model trained using 10% subsets selected
using Adaptive-Random, CRAIGPB, and
GRADMATCHPB on CIFAR100 dataset w.r.t
epochs and time respectively. Here, we select
a new subset every epoch for all the consid-
ered strategies.

Deep learning has achieved tremendous success in many
machine learning tasks, including natural language pro-
cessing, computer vision, and speech recognition in recent
years. Deep learning’s success is partly attributed to the
availability of massive training datasets and the ability to
train vast neural networks. However, training deep mod-
els on massive datasets is computationally demanding,
incurs significant financial expenses, and generates consid-
erable CO2 emissions Strubell et al. (2019); Schwartz et al.
(2020). In this work, we focus on selecting useful, general-
izable data subsets for the efficient training of deep neural
networks. Despite their theoretical guarantees, existing
subset selection approaches Mirzasoleiman et al. (2020);
Killamsetty et al. (2021c;b;d; 2022); Pooladzandi et al.
(2022) are computationally inefficient compared to adap-
tive random subset selection (selection of random subsets
at regular intervals). This is because they are downstream

model dependent and often require the computation of sample metrics such as gradients before each
subset selection step. For example, Figure 1 illustrates the convergence of the ResNet18 model
on the CIFAR100 datasets in terms of time and epochs, using 10% subsets selected every epoch
by GRADMATCHPB Killamsetty et al. (2021b), a SOTA data subset selection strategy for efficient
training, CRAIGPB Mirzasoleiman et al. (2020), and Adaptive-Random (where a new 10% subset
is randomly selected at regular intervals). We select a new subset every epoch to showcase the
maximal performance that can be achieved by GRADMATCHPB and CRAIGPB. Results show that
GRADMATCHPB provides faster epoch convergence than Adaptive-Random and CRAIGPB when
selecting a new subset every epoch. However, due to the need to perform a computationally expensive
subset selection step every epoch, both GRADMATCHPB and CRAIGPB are highly inefficient in

∗A portion of this work was completed while Krishnateja was an intern at IBM Research.
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Figure 3: Block Diagram of MILO for model training using a curriculum of easy-to-hard data subsets,
where data subsets are changed every R epochs of (stochastic) gradient descent, and the gradient
descent updates are performed on the selected subsets.

terms of training time. In their studies, Killamsetty et al. (2021b) and Mirzasoleiman et al. (2020)
recommended selecting a new subset every R epochs to improve training efficiency, but at the
expense of the model’s convergence rate. Finally, model-dependent subset selection necessitates the
compute-expensive subset selection step each time a new model is trained.

Figure 2: Comparison of MILO with full
data training: We contrast the accuracy degra-
dation with speedup compared to the full data
training. We observe speedups of around
3×−10× speedup with around 1.5% accu-
racy drop.

Contributions of this work: We propose MILO, a model-
agnostic subset selection framework for efficient model
training. MILO utilizes submodular measures Fujishige
(2005); Kaushal et al. (2021) which capture higher-order
interactions between data samples for subset selection. We
utilize pre-trained large language models Qiu et al. (2020)
and pre-trained vision transformers Khan et al. (2022) as
feature encoders and compute the sample metrics. This
computation is not dependent on the downstream model
making MILO model-agnostic and thereby allows us to
avoid computationally expensive subset selection steps
during model training, relegating subset selection to the
preprocessing phase. We may train numerous models with-
out additional costs by pre-selecting subsets and saving
them as metadata in each dataset, amortizing the subset
selection costs. MILO uses a model training scheme that

involves training the model on a curriculum of easy-to-hard subsets found using two different data
exploration strategies developed in this work. We empirically demonstrate the effectiveness of MILO
framework for efficient training through extensive experiments on multiple real-world datasets. We
summarize the speedup vs. relative performance achieved by MILO compared to full data training in
Figure 2. More specifically, we demonstrate that MILO can train models 3× – 10× faster.

2 DEVELOPMENT OF MILO

Notation: We briefly describe the notation for various variables that will be used throughout the
remainder of this section. Denote the training dataset as D = {(xj , yj)}mj=1 with m data points. Let
S be the subset of the training dataset of size k on which the downstream model is trained. Let the
feature encoder be denoted as g : X → Z that transforms the input from the feature space X to an
embedding space Z. Let the downstream model parameters be characterized by θ.

Subset Selection Formulation The standard subset selection problem can be formulated as the
maximization of a set function f subject to a budget constraint k:

S∗ = argmax
S:S⊆D,|S|=k

f(S) (1)

If the set function f is monotone submodular1, then the above optimization problem can be solved
with approximation guarantees. As described in Equation (1), the standard subset selection problem
involves maximizing the set function f under a budget constraint. Most set functions f require
the computation of a similarity kernel K Kaushal et al. (2021) to capture higher-order interactions
between data samples. We need informative encodings of samples for such computation. Our

1Let V = {1, 2, · · · , n} denote a ground set of items. A set function f : 2V → R is a submodular Fujishige
(2005) if it satisfies the diminishing returns property: for subsets, S ⊆ T ⊆ V and j ∈ V \T, f(j|S) ≜
f(S ∪ j)− f(S) ≥ f(j|T ).
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first design choice is to utilize existing pre-trained language models or vision transformers as
feature encoders g because they provide a greater level of contextualization, are more expressive
and generalizable, and can be extrapolated Qiu et al. (2020); Khan et al. (2022). It also eliminates
the need for downstream machine-learning models to compute sample representations. We analyze
the effectiveness of different language models or vision transformers as feature encoders for subset
selection in Appendix G.4.1. In this work, we experiment with facility location, graph-cut, disparity-
sum, and disparity-min set functions. Apart from disparity-min, all other set functions considered
are submodular. Even though disparity-min is not submodular, it has been empirically demonstrated
to operate well with the conventional greedy approach Dasgupta et al. (2013) and was therefore
examined. We provide instantiations of the considered set functions in Appendix F and a comparison
of their effectiveness for subset selection in Appendix G.4.3. A significant disadvantage of training
models using fixed data subsets is the requirement of large data subsets (about 70% or more) to
achieve similar accuracy to full data training, resulting in longer training times. However, suppose
the objective is to achieve the best performance within a specified timeframe. In that case, the model
must also explore data instead of simply relying on a fixed subset of data. For instance, the ResNet101
model trained on a fixed 10% random subset of the CIFAR10 dataset for 200 epochs yielded 66.9%
test accuracy. In contrast, the ResNet101 model achieved 87.54% test accuracy when trained on an
adaptive 10% subset of CIFAR10 data for 200 epochs, where a new subset is randomly selected after
each epoch. Although random data exploration is simple but an empirically successful method of
exploring data, it is not the most effective method because the selected random subsets are prone to
redundancy. It is therefore essential to develop a strategy that achieves a balance between Subset
Exploration and Subset Exploitation. To achieve a balance between exploration and exploitation,
we must train our models on small, highly informative subsets while allowing exploration of less
informative samples. Below, we present two scalable alternatives to data exploration with varying
exploration-to-exploitation ratios.

Stochastic-Greedy Exploration (SGE): The first method we employ to explore the data is iden-
tifying multiple subsets with high function values. Then, we train the downstream model based
on those selected subsets by changing the subsets every R epochs. Due to its focus on subsets
with high function values, this approach emphasizes exploitation rather than exploration. To select
n subsets S1,S2, · · · ,Sn from dataset D with high set function values, we employ the stochastic
greedy algorithm Mirzasoleiman et al. (2015) for maximization of the set function f and repeat the
maximization n times.

S1,S2, · · · ,Sn ←− SGE(f,D, k) (2)

The randomness of the stochastic greedy algorithm allows us to choose a different subset with an
approximate guarantee of O(1− 1

e − ϵ) every time. Due to space constraints, a detailed pseudocode
of the "SGE" is given in Algorithm 2 in Appendix D.

Weighted Random Exploration (WRE): In this approach, we explore the data by constructing a
multinomial probability distribution p over the entire dataset D and sampling a subset S of size k
every R epochs from the constructed probability distribution without replacement. Our main idea is
to use a weighted random sampling approach Efraimidis & Spirakis (2016) by assigning each data
sample the normalized set function gains associated with it during greedy maximization as its weight.
More specifically, we maximize the set function f over the entire dataset D greedily and store the
set function gains associated with each data sample e at the moment of its greedy inclusion as its
importance score ge. Accordingly, if S represents the subset selected greedily so far, and e represents
the next greedy optimal data sample to be added, the set function gain value of e is f(S ∪ e)− f(S).

g = [g1, g2, · · · , gm]←− GreedySampleImportance(f,D) (3)

We normalize the importance scores g and construct the probability distribution p over the training
set D by employing the second order Taylor-Softmax function de Brébisson & Vincent (2016) over
the importance scores. Due to the diminishing gains property of submodular functions, when f
is submodular, the set function gain of elements added in early iterations is greater than that of
elements selected in later iterations. In addition, the generated probability distribution p guarantees
that informative samples are assigned a higher probability than less informative ones. Importantly,
sampling from the probability distribution p allows for exploring less informative samples while
selecting informative samples more frequently. Once the probability distribution p is constructed,
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sampling new subsets from the constructed multinomial probability distribution is as fast as random
subset selection. We use the probability distribution p to sample new subsets of size k every R epochs
by sampling k points (without replacement). Due to space constraints, a detailed pseudocode of the
greedy sample importance estimation is given in Algorithm 3 in Appendix D.
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Figure 4: Subfigure (a) shows the performance of
the ResNet18 model trained on 5%, 10%, and 30%
subsets of the CIFAR100 dataset using SGE and WRE
approaches with different set functions. Subfigure
(b) shows the convergence of the ResNet18 model
trained on a 5% subset of the CIFAR100 dataset using
SGE with Graph Cut and WRE with Disparity-Min
function.

SGE vs. WRE: Sub-figure 4(a) demonstrates
that training the ResNet18 model with WRE(that
emphasizes more exploration) results in better per-
formance than using SGE(that emphasizes more
exploitation) and fixed data subsets(pure exploita-
tion). Further, using Disparity-Min as a set func-
tion performs better than other set functions for
both exploration approaches. Even though WRE
performs better than SGE, we made a critical em-
pirical observation highlighting that SGE with
Graph-cut results in superior model convergence
in initial iterations. Sub-figure 4(b) illustrates the
superior model convergence of SGE using graph-
cut (easy samples) in initial training iterations
compared to the WRE using disparity-min (hard
samples), WRE using graph-cut (easy samples)
and SGE using facility location (easy samples) on

the CIFAR100 dataset. Even though we show the superior initial convergence of SGE with graph-cut
on one single dataset here, we observe this phenomenon across different datasets and subset sizes.
(See Figures 8,9 in Appendix). We also explain why SGE with graph-cut results in superior initial
convergence than SGE with facility location and WRE with graph-cut even though all of these
approaches try to select easy/representative samples in Appendix G.4.4 and G.4.5.

Developing an Easy-to-Hard Curriculum: Based on the results given in Sub-figure 4(b) and
the empirical success of existing easy-to-hard curriculum learning approaches Lee & Grauman
(2011); Hacohen & Weinshall (2019); Zhou et al. (2020), we aim to develop a curriculum of easy-to-
hard subsets by employing SGE with graph cut in initial iterations and WRE with disparity-min in
later iterations for model training. We build a curriculum of easy-to-hard samples by training the
model for a fraction κ of the total number of epochs using SGE with graph cut function and then
using WRE with disparity-min for the rest of the total number of epochs. κ is a hyper-parameter
that denotes the fraction of the epochs for which we used stochastic exploration with a graph-cut
function. Since WRE using disparity-min ensures that subsets consisting of hard and easy samples
are selected (with a greater probability for hard samples), using WRE in later iterations minimizes
the catastrophic forgetting of the model on easy samples. In our experiments, we set κ = 1

6 ,
which we found optimal after tuning the hyper-parameter κ. We present the κ hyper-parameter
tuning results in Appendix G.4.7. Further, we highlight the advantage of the curriculum-based data
exploration in achieving superior model convergence and performance through an ablation study
given in Appendix G.4.6. Figure 3 gives a pictorial representation of the MILO training pipeline.
Detailed pseudocode of the MILO algorithm is provided in Algorithm 1 in Appendix D. To reduce
the memory footprint of MILO, we discuss the class-partitioning trick that we use with MILO by
default in Appendix E.

3 EXPERIMENTAL RESULTS

Our experiments aim to demonstrate the stability and efficiency of MILO for model training. We
repeat each experiment for five runs and report only the mean test accuracies in our plots for better
visualization. Appendix (G.5) presents a detailed table with both mean-test accuracy and the standard
deviations. For a fair comparison, we use the same random seed in each trial for all methods.

Baselines, Datasets, and Experimental Setup: Our experiments aim to demonstrate the effective-
ness of MILO for model training. We compare MILO with RANDOM: randomly sample a fixed subset
of the same size subset used by MILO from the training data, ADAPTIVE-RANDOM: adaptively
sample a random subset of the same size subset used by MILO from the training data every R epochs,
FULL: using the entire training data for model training and tuning, FULL-EARLYSTOP: where we
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Figure 5: A comparison of MILO with baselines for model training using subset sizes of 1%, 5%, 10%, and
30%. SpeedUp vs Accuracy Degradation, both compared to full data training for (a) ResNet18 on CIFAR-10, (b)
ResNet101 on CIFAR100, (c) ResNet101 on TinyImageNet, (d) LSTM on TREC6, (e) BERT+MLP on IMDB.
On each scatter plot, smaller subsets appear on the right, and larger ones appear on the left. We observe that
MILO significantly outperforms existing baselines in accuracy degradation and speedup tradeoff compared to
full data training(bottom-right corner of each plot indicates the best speedup-accuracy tradeoff region).
Plot (f) shows the model convergence with time. Again, we see that MILO achieves much faster convergence
than all baselines and full training.

do an early stop to full training to match the time taken (or energy used) by MILO, and adaptive
gradient-based subset selection strategies for efficient learning where a new subset is selected every
R epochs, namely CRAIGPB: the faster per-batch version of CRAIG Mirzasoleiman et al. (2020)
shown in Killamsetty et al. (2021b), GLISTER Killamsetty et al. (2021c), GRAD-MATCHPB: the
per-batch version of GRAD-MATCH Killamsetty et al. (2021b). We perform experiments on vision
and text datasets namely, CIFAR100 (60000 instances) Krizhevsky (2009), CIFAR10 (60000 in-
stances) Krizhevsky (2009), TINYIMAGENET (120000 instances) Le & Yang (2015), TREC6 Li &
Roth (2002); Hovy et al. (2001), and IMDB (50000 instances) Maas et al. (2011). More experimental
details are given in Appendix G.

Results: Figure 5 presents the results comparing the accuracy-efficiency tradeoff between the
different subset selection approaches for model training for different subset sizes of the training
data: 1%, 5%, 10%, and 30%. Our experiments use a R value of 1 (i.e., subset selection every
epoch) for MILO and ADAPTIVE-RANDOM. To achieve comparable efficiency with other adaptive
baselines, including CRAIGPB, GRADMATCHPB, and GLISTER, we use an R value of 10 for vision
experiments and a R value of 3 for text experiments. We present the study for optimal R value in
Appendix G.4.8. Sub-figures(5(a), 5(b), 5(c), 5(d), 5(e)) show the plots of accuracy degradation vs
speedup, both w.r.t full training. From the results, it is evident that MILO achieved the best speedup
vs. accuracy tradeoff and is thereby environmentally friendly based on CO2 emissions compared to
other baselines. In particular, MILO achieves speedup gains of 3.34x and 10.69x with a performance
loss of 1.03% and 4.07% using ResNet18 on CIFAR10. Further, MILO achieves speedup gains of
around 3.2x with a performance loss of 1.30% and 3.18% using ResNet101 on TinyImageNet and
CIFAR100 datasets. MILO achieves even greater speedup gains of around 10x with a performance
loss of 2.30% on TREC6 dataset. Further, MILO is highly effective for finetuning of BERT+MLP
model on the IMDB dataset achieving a speedup gain of 24.94x with a performance loss of 1.20%. On
text datasets, ADAPTIVE-RANDOM baseline performs poorly. Further, as evidenced by the increasing
gap between MILO and ADAPTIVE-RANDOM on CIFAR10, CIFAR100, and TinyImagenet datasets,
the effectiveness of ADAPTIVE-RANDOM decreases with an increase in dataset complexity. Sub-
figure(5(f)) show that MILO achieves faster convergence compared to all other methods on the
CIFAR100 dataset using 30% subsets.

4 CONCLUSION

We introduce MILO, a probabilistic subset selection method for efficient training and tuning. We
show that MILO is model-agnostic and is as efficient as random subset selection while achieving
superior model convergence compared to existing SOTA subset selection strategies. Empirically, we
show that MILO achieves 3×−10× faster model training with minimal performance loss. We believe
that MILO contributes significantly to society by allowing faster and more energy-efficient modeling
training and tuning, resulting in lower CO2 emissions. However, MILO is reliant on the availability
of pre-trained models for feature encoding, which may be a limitation in some specialized domains
where pre-trained models are scarce. This limitation, however, is expected to be addressed as a result
of ongoing research on training domain-specific and multi-modal transformer architectures.
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