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ABSTRACT

Time series forecasting is applied to a wide range of domains like climate moni-
toring, economic growth, population monitoring, and financial prediction. All of
these applications, however, require fitting a model to each new time series, which
can become burdensome in low-resource settings. The vast majority of time-series
forecasting approaches require a training dataset. There is very recent work on
zero-shot forecasting—pretraining on one series and evaluating on another—yet
its performance is inconsistent depending on the training dataset. In this work,
we take a different approach and devise ForecastPFN, the first universal zero-shot
model, pretrained purely on synthetic data. Drawing inspiration from TabPFN,
a recent breakthrough in tabular data, ForecastPFN is the first forecasting model
to approximate Bayesian inference. To accomplish this, we design a synthetic
time-series distribution with local and global trends, and noise. Through experi-
ments on multiple datasets, we show that ForecastPFN achieves competitive per-
formance without ever seeing the training datasets, compared to popular methods
that were fully trained on the training dataset. Most importantly, we demonstrate
that in the lowest resource setting, ForecastPFN produces the best performance.

1 INTRODUCTION

Time-series forecasting problems are an important class of problems with applications in healthcare,
such as diagnosing diseases, predicting disease progression, and online monitoring (Harutyunyan
et al., 2019; [Chimmula & Zhang| [2020), in addition to other areas such as forecasting financial
metrics, supply and demand, and cloud computation monitoring (Sezer et al., [2020; Krollner et al.,
2010). The vast majority of time-series forecasting approaches require training on a training dataset,
however, many real-world forecasting applications have very few initial observations, sometimes
just one hundred or less. While there is recent work on zero-shot forecasting (Oreshkin et al., [2021)
by training on one time series and evaluating on another, its performance is inconsistent depending
on the dataset on which it is trained. As in prior work (Oreshkin et al.l 2021), we use the term
“zero-shot forecasting” when the number of available observations for the target time series is so
small (such as 100 or less) that training a deep learning model is not possible.

In this work, we take a different approach and devise ForecastPFN, the first universal zero-shot
method, pretrained purely on synthetic data. We draw inspiration from TabPFN (Hollmann et al.,
2022), a recent breakthrough in tabular data, which is trained offline to approximate Bayesian in-
ference using prior-data fitted networks (PFNs). However, there are significant challenges when
designing a general and flexible PFN in the forecasting setting. First, we design a novel synthetic
time-series distribution with global trends, multi-scale seasonal trends, and noise. Next, we design
a scheme for dynamically scaling across a wide range of time-series values. Finally, we design a
flexible transformer architecture that can query values at any timestep in the future.

We show that by carefully designing a prior-data fitted network for forecasting, unlike TabPFN,
our model achieves competitive performance without ever seeing the training datasets, compared to
popular methods that were fully trained on the training datasets. This remarkable result is due to the
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Figure 1: Left: standard setting for time-series forecasting. Right: ForecastPFN setting; zero-shot
forecasting by training on synthetic time series.

structure of our synthetic priors: by encoding multi-scale seasonal trends, global trends, and noise,
across a variety of parameters, our model is able to learn how to forecast general time series. Our
codebase and all raw results will be open-sourced after the double-blind review process.

2 RELATED WORK

Time-series forecasting problems have numerous applications in healthcare (Harutyunyan et al.,
2019; /Chimmula & Zhang, [2020) and other areas (Sezer et al., 2020; Krollner et al.| 2010). Already
in the 1970s, ARIMA builds an autoregressive model based on Markov processes (Box & Pierce,
1970). A popular method in practice is Prophet (Taylor & Lethaml [2018)), which incorporates non-
linear trends and multi-scale seasonality via traditional methods. Recently, researchers have turned
to deep learning to model highly nonlinear time series. DeepAR (Salinas et al.| [2020) is a popular
deep learning method which makes use of autoregressive methods and RNNs. Recently, many works
have applied transformer models to time-series forecasting (Zhou et al., 2021} Kitaev et al., 2020;
Wu et al.| [2021), following the success of transformers on NLP (Vaswani et al., |2017). FEDformer
(Zhou et al.} [2022) is a popular recent method that incorporates Fourier transforms and the seasonal
trend decomposition method into a transformer architecture. For a survey on deep learning methods
for time-series forecasting, see Mahmoud & Mohammed| (2021)).

There is much less work on zero-shot time-series forecasting. (Oreshkin et al.| (2021) use an MLP
with residual connections to train on a (single) real-world time series and test on a different time
series. However, it achieves substantially different performance based on which training dataset is
used. Recently, Adriaensen et al.| (2022)) designed a PEN for learning curve extrapolation; however,
the setting for learning curve extrapolation is significantly different and arguably a special case of
time-series forecasting. To the best of our knowledge, we are the first to design a single, universal
model for zero-shot time-series forecasting, trained purely on synthetic data.

3 PRIOR-DATA FITTED NETWORKS FOR FORECASTING

In this section, we introduce prior-data fitted networks (PFNs) for forecasting, and then we introduce
our ForecastPFN model. PFNs were first introduced by Hollmann et al.| (2022); Miiller et al.|(2022)
for classification and by |Adriaensen et al.| (2022) for learning curve extrapolation. We extend the
idea of PFNs to time-series forecasting.

We model time series as the combination of an underlying time series hypothesis with the addition
of noise. Each hypothesis ¢ € ® is a function ¢ : N — R which generates an underlying time
series — defined as a time series with seasonal and trend components but without noise. In order
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to generate a time series from a hypothesis, we add noise. That is, a function ¢ is used to generate
time series D = {(t,y:)}L_,, where y; = ¢(t) - 2; and z; is sampled from a noise distribution with
amean of 1. We define ® as a set of hypotheses.

The posterior predictive distribution (PPD) for a point y is the distribution of its values given time ¢
and dataset D, p (- | ¢, D), and it is computed for a particular point y by integrating over the set of
hypotheses @ as follows:

ply|t,D) x Ap(y | £, 0)p(D | @)p(p)dep.

We conduct synthetic prior-fitting as in Miiller et al.| (2022);|Adriaensen et al.|(2022)), adapted to the
time-series forecasting domain. Prior-fitting is the training of a prior-data fitted network (PFN) to
approximate the PPD. As in (Hollmann et al.| |2022)), we use a prior-sampling scheme p(D) which
first samples a hypothesis ¢ ~ p(¢) and then a dataset D ~ p(D | ¢). In order to train the PFN,
we iteratively sample a prior ¢ and dataset D = {(t, )}/, using the above method and split the
dataset into an input set and a test set, Di, = {(t,y;)}¢_; and Dyese = {(t, y:)}~_,. We use the PFN
to predict Dy given Dji, and compute the training loss as the mean squared error for the predicted
Dy, which trains the PFN to approximate Bayesian inference (Miiller et al., [2022).

ForecastPFN. The majority of existing time-series forecasting methods work only for a fixed
series length, horizon length, and frequency. In contrast, we design a PFN for forecasting, Fore-
castPFN, which can handle a wide variety of time series. We use an encoder-based transformer,
consisting of a multi-head attention layer and two feedforward layers. This is in stark contrast to
prior work on zero-shot forecasting (Oreshkin et al., 2021, which used a residual network.

The transformer accepts data in the form of tokens (¢,y;). The transformer takes in a set of ¢
contiguous tokens, along with a query consisting of a future date without a value, and then it predicts
the PPD of this query. This is in contrast to existing transformer models for forecasting, which are
only set up to predict the next IV steps in the current sequence. The date, ¢, is represented in terms
of time features corresponding to the year, month, day, day of the week, and day of the year.

When standard forecasting models are trained on the training data, it is typical to apply transforms
to put the data in a fixed range. However, ForecastPFN is designed to handle scaling dynamically:
first, outliers are removed by scaling based on the 99th percentile of the input. Second, to give the
model a high dynamic range, the following transform is applied for input z: tanh (x . 4[_4“"4]) .
In other words, this splits the input into multiple channels, sensitive to scales of different order of
magnitude, allowing the model to concentrate on different scales in the same time series.

We train ForecastPFN with a novel prior for time-series forecasting, described in the next section.
We generate 100000 synthetic daily, weekly, and monthly series, each of length 200, and we use
a sliding window of size 100 to obtain 101 prediction tasks per series. We sample 1024 tasks in
a training step, and there are 1000 training steps in an epoch. We trained the transformer for 300
epochs on a single Tesla V100 16GB GPU, which took 16 hours. Note that this training is done
offline, and only once. The trained ForecastPFN was used for all experiments in our paper and can
be used in the future on any new time series.

Synthetic Data Distribution. Unlike all prior work in forecasting, our model is not trained on any
real-world data; it is trained purely on synthetic data. As discussed above, we assume that there is
a distribution of time series from which real-world time series are derived. We show that when we
model data from the distribution described below, we can adequately capture aspects of time series
data in order to produce high performance zero-shot forecasting models.

We model our synthetic data with the simple premise that time series data have two indepen-
dent components: underlying (¢) and noise (z;). Further, we model the underlying time series
as being comprised of a seasonal and a trend component. We see these as three independent as-
pects of time series data and model them as below, where the time series is the product of a
trend and seasonality with an additional noise factor. The trend component is made up of a lin-
ear and exponential component with coefficients My, Ciin, Mexp, Cexp Sampled from normal distri-
butions such that mjin, Mexp ~ N(—.01,0.5), clin ~ N(0,0.01), cexp ~ N(1,0.005). The sea-
sonal component has a week, month, and year component where each comprises of of coefficients
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Mweek; Mmonth; Myear; Ci, d; Where the ¢;, d; ~ N(0,1/4). Finally, the noise in our model is derived
from a Weibull distribution and is modeled such that the expected value of the noise model is 1,
meaning in expectation the noise does not contribute to the seasonality or trend of the time series.
We set p() based on the following equation, with random draws to ¢;, d;, and z.

yr = @(t) - z; = trend(t) - seasonal(¢) - z;, where
2t = 1+ Moise (2 — Z) , where z ~ Weibull(1, k), zZ = (In2)*/*
trend(t) = (1 + muin - ¢ + ciin) (Mexp - cﬁxp)
seasonal(t) = seasonalyeek (t) - seasonalmonen (t) - seasonalye,(t), where

k
t Mod t Mod
seasonalper(t) = 1 + Mper Z [Ci sin <27Tipper) + d; cos (2m‘pper)] ;
i=1 DPrper Dper

where per € {week, month, year} and pyeek = 7, Pmonth = 30.5, Pyear = 365.25.

4 EXPERIMENTS

We compare ForecastPFN to various forecasting models on different datasets. We compare against
two high-performing traditional methods: ARIMA (Box & Pierce, |1970) and Prophet (Taylor &
Letham), 2018), and three state-of-the-art transformer-based method: FEDformer (Zhou et al., 2022),
Autoformer (Wu et al., 2021)), and Informer (Zhou et al., 2021)). All experiments were done using
the same pretrained ForecastPFN model (the one described in the previous section).

‘We evaluate our method on two datsets. Illness is a dataset ontaining influenza-like illness patients
in the United States. It contains 966 datapoints with 8 dimensions, spaced weekly. Exchange is a
currency exchange dataset (Lai et al.,2018) across 8 countries, consisting of 7588 datapoints with 9
features, spaced daily.

Experimental setup and results. Following prior work (Zhou et al.| [2022; Wu et al., 2021]), for
the Illness dataset, we fix the input length to be 36, and we predict the next sequences up to length
24, 36, 48, and 60. For the Exchange dataset, we fix the input length to 96, and we predict the
next sequences up to length 96, 192, 336, and 720. We focus on the univariate case, leaving the
mutlivariate case for future work. Additionally, we scale our datasets using the approach of (Zhou
et al., 2022) where all data is scaled to zero mean and unit variance of the training data. The same
transformation is then applied to the test data. At inference on the test set, the data may not be scaled
such that it has zero mean and unit variance, for example if the test data trends higher or lower than
the training data. However, if a model expects input to be within the unit interval, we then scale the
input sequence of the test sequence to be as such and then inverse the scaling on the prediction.

We compare a low budget (1 second) and moderate budget (1 minute) for training the baseline
models. During this budget, we allow for each comparison baseline method to train for that budgeted
amount of time on the dataset. Explicitly, we allow a baseline, like Prophet, to fit to the training data
for 1 second (or 1 minute) by learning from the training dataset. Training runs which take twice the
allocated budget are omitted from our analysis. We expect, and show, that the performance on the
resource-constrained, small budget should yield worse performance (higher MSE) than performance
when there is a longer training time. This contrasts to ForecastPFN which does not train on the given
dataset and so performance on both budgets is the same.

We report mean squared error (MSE) for the evaluation as the mean MSE over five training runs
for each configuration. Our main results are presented in Table |l We see that at the lowest budget
(1 second of training time) and for every prediction length (except for one — 720 on the Exchange
dataset), ForecastPFN achieves the lowest MSE. This confirms that ForecastPFN’s strength rests
in the ability to quickly perform well on a wide range of forecasting tasks, without ever seeing
any part of the training time series for a given dataset. We also see that with a 1 minute budget,
ForecastPFN still achieves competitive results, particularly on the Exchange dataset where it is the
top-performing method at prediction length 96, 192, and 336. We also note that the simple Prophet
algorithm outperforms all transformer-based methods in the 1 minute setting, which is in line with
recent work (Zeng et al., [2022).

'https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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Table 1: Forecasting results on Illness and Exchange datasets with two budgets, 1 second and 1
minute, for training. A lower MSE indicates better performance. A blue bold is for the best per-
formance on 1 second budget, and black bold is for the best performance on 1 minute budget.
Configurations which took twice than their budget to converge are omitted from this table.

Datasets \ Illness \ Exchange
Methods ‘ Budget ‘ 24 36 48 60 ‘ 96 192 336 720

Is 1.011  0.799 0.881 1.047 | 0.237 0.351 0.577 1.231
Im 1.011 0.799 0.881 1.047 | 0.237 0.351 0.577 1.231

Is 1.087 1.137 1.243 1.533 | 0.331 0416 0.579 1.155
Im 0.690 0.548 0.662 0.796 | 0.236 0.407 0.637 1.439

Is 2042 2291 2.188 2.124 | 1.697 1.136 1.684 1.951

ForecastPFN

FEDformer-w

Autoformer Im | 0712 059 0715 0904 | 0.227 0.664 0900 1.171
Informer Is | 4586 4.036 4.177 4289 | 1256 1.092 1471 1.800
orme Im | 5.039 4052 4210 4.688 | 0966 1.577 3.188 1.673
Pronhet Is | 3439 3384 3321 3.345| 1303 1309 1328 1.379
p Im | 3439 3384 3321 3345|1303 1309 1328 1.379
Arima Is

Im 3749 3.663 3.643 3.726 | 1.057 1.053 1.066 1.077

5 CONCLUSIONS AND FUTURE WORK

In this work, we introduced ForecastPFN, the first universal zero-shot model, trained purely on
synthetic data. To accomplish this, we designed a novel synthetic time-series distribution and a new
dynamic scaling method. Through experiments on multiple datasets, we show that ForecastPFN
achieves competitive performance without ever seeing the training datasets, compared to popular
methods that were trained on the training data.

We see serious promise in our approach and its applications to low-resource settings where fitting a
model to each new time series is prohibitive. As such, further work in expanding the evaluation of
ForecastPFN to a broader range of datasets and domain areas is warranted.
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