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ABSTRACT

The spread of machine learning models, complemented by the increased adoption
of electronic health records (EHRs) has opened the door for developing clinical
decision support systems. However, despite the great promise of machine learn-
ing for healthcare in low-middle-income countries (LMICs), many data-specific
limitations, such as the small size and irregular sampling, hinder the progress in
such applications. Recently, deep generative models have been proposed to gen-
erate realistic-looking synthetic data, including EHRs, by learning the underlying
data distribution without compromising patient privacy. In this study, we first
use a deep generative model to generate synthetic data based on a small dataset
(364 patients) from Ho Chi Minh City Hospital for Tropical Diseases, Vietnam.
Next, we use synthetic data to build models that predict the onset of hospital-
acquired infections (HAIs) based on minimal information collected at patient ICU
admission. The performance of the diagnostic model trained on the synthetic data
outperformed models trained on the original and oversampled data using tech-
niques such as SMOTE. We also experiment with varying the size of the synthetic
data and observed the impact on the models’ performance. Our results show the
promise of using deep generative models in enabling healthcare data owners to
develop and validate models that serve their needs and applications, despite limi-
tations in dataset size.

INTRODUCTION

Developing clinical decision support systems applications using electronic health records (EHRs)
and machine learning (ML) techniques has gained increased interest from the research community
(Xiao et al., 2018). Despite the promising results of many of these applications, the performance
of ML models is highly dependent on the availability of training data (Jeni et al., 2013; van der
Ploeg et al., 2014). ML models tend to be data hungry, where models could easily overfit and
under-perform when trained on a small dataset (Jeni et al., 2013; van der Ploeg et al., 2014). The
dependence on data hurdles the optimal development and utilization of clinical decision support
systems, specifically in resource-constrained clinical settings. Many healthcare facilities in Low
Middle-Income Countries (LMICs) suffer from limitations, such as high patient-doctor ratio, and
financial and infrastructural constraints all of which impact the scale of research that could serve
such populations.

While most of the world’s population resides in LMICs, however, the patient-to-doctor ratio is lower
than that of high-income countries by 10 folds (Schneider et al., 2004) resulting in an increased bur-
den on the clinical staff. Moreover, healthcare systems in LMIC countries often experience infras-
tructural constraints, diagnostic capacity (Galindo-Fraga et al., 2018), frequent changes in strategic
healthcare policies, and political instability (Mills, 2014), all of which could impact the quantity and
quality of healthcare data collected from such clinical settings. These limitations make collecting
large-scale data infeasible as it adds extra costs and burdens. Notwithstanding the relevance of ML
healthcare work conducted in more advanced healthcare settings, many diseases and applications
are specific and more prevalent in low-resource settings, resulting in an unmet need for machine
learning research applications that are developed and validated for low-resource settings.

1



ICLR 2023 Workshop on Practical Machine Learning for Developing Countries

Many of the current medical statistics and data-driven models rely on methods such as SMOTE
which oversample the training data, especially in imbalanced settings. Oversampling methods could
introduce flawed correlations and dependencies between samples and result in limited data vari-
ability (Fernández et al., 2018), all of which could severely underperform in testing environments.
Recent works in deep learning research proposed generative models that learn the underlying data
distribution and generate realistic-looking data while preserving the privacy of the original samples.
Those deep generative models, including Generative Adversarial Networks (GANs) and Variational
AutoEncoders (VAEs) (Kingma & Welling, 2013; Goodfellow et al., 2014) have been originally
proposed and validated for the imaging domain. Despite being very relevant and highly needed,
using deep generative models for synthesizing EHRs for low-resource clinical applications is often
not discussed nor motivated in most proposed works (Ghosheh et al., 2022).

To this end, this paper proposes synthetic data as a solution for developing models based on small
datasets collected from LMIC countries. To do so, we train a GAN-based model to learn the under-
lying data distribution and generate synthetic samples that could be utilized for training purposes.
Specifically, we utilize a small dataset (364 patients) collected from an Intensive Care Unit in Viet-
nam (Thuy et al., 2018), with variables collected at admission and a binary outcome indicating if
the patient got a hospital-acquired infection. With the increased burden of antimicrobial resistance,
especially in LMICs, it’s vital to develop risk scores to predict the probability of developing such
infections. This could allow the clinical staff to take anti-septic measures, reduce unnecessary an-
tibiotics prescriptions and introduce timely interventions to prevent prolonged lengths of stays.

Our contributions could be summarized as follows. For the first time, we demonstrate the feasibility
of using generative models for synthesizing data that is used to develop ML models from small
datasets from LMIC healthcare settings. Furthermore, we evaluate the utility of the synthetic data
in comparison to other commonly used approaches such as data oversampling and showcase the
impact of synthetic data size on the performance of the predictive model in a series of experiments
where the synthetic data training size is varied. The proposed method provides a plausible solution
that could be used for developing diagnostic models despite data scarcity in LMICs.

METHODS

DATASET

The data used in this work is collected from Ho Chi Minh City Hospital for Tropical Diseases,
Vietnam, and released for open access (Thuy et al., 2018). The patients included in this study are
364 a total of patients who were all admitted to the ICU and stayed at least two days. The included
variables are those readily available at the admission of ICU, which we categorize into comorbidities,
demographics and admitting diagnosis. The outcome of interest is a binary label indicating if the
patient acquired an infection during their stay. We describe the statistical distribution of our dataset
in terms of outcomes and included features in Table 1.

SYNTHETIC DATA GENERATION

To evaluate the feasibility of using synthetic data as a training set, we apply a random train-test split
for our data to obtain separate training and testing sets, with a split of 70% for training and 30% for
the held-out set used for testing the performance of the model. The training set is used to train the
GAN model for tabular data, namely medGAN (Choi et al., 2016). Upon training the GAN model
the size of synthetic data is determined at inference time.

TASK AND BASELINES

The generated synthetic data is used to train a simple random forest model to predict hospital-
acquired infections during the patient’s ICU stay. The choice of a simple model is motivated by its
relative simplicity, with often comparable performance to many advanced models, making it a good
candidate for deployment in hospitals in LMICs. We compare the performance of the model trained
on the synthetic data to those trained on the (1) original small training set and (2) oversampled
training data using SMOTE. To better understand the impact of the synthetic data size on the predic-
tive model performance, we train the GAN model to synthesize data of various sizes at inference.
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Table 1: List of included patient features in terms of count and percentage prevalence in the popula-
tion

Comorbidities (n, %)
Diabetes 35 (9.62%)
Steroids 15 (4.12%)
Chronic Liver 55 (15.11%)
Chronic Kidney 3 (0.82%)

Demographics (n, %)
Female 242 (66.48%)
Age

16-45 133 (36.54%)
45-60 142 (39.01%)
65+ 89 (24.45%)

Admission Diagnosis (n, %)
Tetanus 17 (4.67%)
Sepsis 45 (12.36%)
Local Infections 75 (20.60%)
Dengue 204 (56.04%)
Internal Medicine 139 (6.32%)

Outcomes (n, %)
Hospital Acquired Infections 86 (23.6%)

The synthesized data is then used to train the predictive model, where the performance is compared
to that of models trained with original and oversampled data. The final performance is reported
on the held-out test set in terms of Area Under the Receiver Operating Characteristic Curve (AU-
ROC) (Hajian-Tilaki, 2013), The area under the Precision-Recall Curve (AUPRC) (Ozenne et al.,
2015), and balanced accuracy with confidence intervals computed using bootstrapping with 1,000
iterations. An overview of the predictive modelling and evaluation of our approach is presented in
Figure 1.
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Figure 1: Overview of the proposed model trained on the synthetic data. (a) the dataset is split into
training and a held-out test set. The training set is used to train the deep generative model which
generates synthetic data. (b) a logistic regression model is trained in three different setups, (1)
original, (2) SMOTE, (3) synthetic data which are evaluated on the held-out test set and compared
in terms of the performance metrics
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RESULTS

In Table 2, we present the results of the models trained on the original training data, the oversampled
data, and synthetic data of various sizes. The original model achieved a performance of 0.536
in AUROC, compared to 0.565 for the SMOTE baseline. The models trained on synthetic data
outperformed the other baselines, with a performance of 0.605 in terms of AUROC and 0.298 in
terms of AURPC when using 10000 synthetic samples. The model trained on the original data
and SMOTE are first outperformed by the model trained with 1000 synthetic samples in terms of
AUROC and AUPRC, where it also achieved the highest balanced accuracy of 0.571. We notice that
performance gains after increasing the synthetic data size from 1,500 to 10,000 are minimal, where
the balanced accuracy did not change, with minor changes observed in AUROC and AUPRC scores.
The results are also visualized in Figure 2.

Table 2: Results of the predictive model using the various baselines for training data. The results are
reported in terms of AUROC, AUPRC and Balanced Accuracy.

Model AUROC AURPC Balanced Accuracy

Original 0.536 (0.393, 0.679) 0.251 (0.160, 0.389) 0.471 (0.442, 0.493)
SMOTE 0.565 (0.425, 0.704) 0.278 (0.168, 0.443) 0.538 (0.425, 0.642)
Synthetic 100 0.502 (0.352, 0.667) 0.258 (0.154, 0.424) 0.548 (0.455, 0.662)
Synthetic 200 0.516 (0.379, 0.665) 0.262 (0.159, 0.439) 0.548 (0.449, 0.659)
Synthetic 500 0.526 (0.389, 0.672) 0.265 (0.165, 0.435) 0.555 (0.461, 0.654)
Synthetic 1000 0.597 (0.471, 0.735) 0.296 (0.190, 0.480) 0.571 (0.464, 0.674)
Synthetic 1500 0.602 (0.465, 0.74) 0.295 (0.191, 0.478) 0.569 (0.476, 0.668)
Synthetic 2000 0.602 (0.465, 0.725) 0.295 (0.188, 0.475) 0.569 (0.473, 0.667)
Synthetic 2500 0.602 (0.467, 0.731) 0.297 (0.184, 0.488) 0.569 (0.477, 0.670)
Synthetic 10000 0.605 (0.473, 0.737) 0.298 (0.185, 0.472) 0.569 (0.476, 0.668)
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Figure 2: Performance of the predictive model trained using synthetic data of various sizes, SMOTE,
and original training set
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DISCUSSION AND CONCLUSION

Despite the increased research interest in using deep generative models, there exists a gap in identi-
fying the opportunities and limitations such models have in machine learning applications for low-
source settings. To the best of our knowledge, this work is the first to investigate the use of deep
generative models for generating EHRs from LMICs, where the datasets often come with small sizes
and feature sets. Another contribution of this work is demonstrating the impact of the size of the
generated data on the performance of the predictive model, which we believe is an understudied
area of research. While the results of the predictive model could be improved by using neural net-
works, we prefer using a simpler model to simulate a close setup to the target application setting
in resource-constrained settings. Furthermore, the model used to generate the synthetic EHRs is
medGAN (Choi et al., 2017) which is one of the simpler and earlier works of GANs for EHRs. We
believe that results could be improved by using conditional variants of GANs (Li et al., 2021), and
those with more stable loss functions (Baowaly et al., 2019).

The promising results of using synthetic data for training purposes will open the door for new re-
search directions in building ML models for LMIC despite data scarcity, which could pave the way
for new research and clinical decision support systems that best fit LMIC settings. Furthermore,
in the absence of protection guidelines and regulations such as HIPAA (for Disease Control et al.,
2003) and GDPR (Voigt & Von dem Bussche, 2017) that are specific to low-resource settings, we
believe that using deep generative models could encourage data owners in low-resource settings to
share synthetic data for international research without compromising the privacy of patients coming
from low-resource settings.
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