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ABSTRACT

Unsupervised approaches for learning representations invariant to common trans-
formations are used quite often for object recognition. Learning invariances makes
models more robust and practical to use in real-world scenarios. Since data trans-
formations that do not change the intrinsic properties of the object cause the ma-
jority of the complexity in recognition tasks, models that are invariant to these
transformations help reduce the amount of training data required. This further in-
creases the model’s efficiency and simplifies training. In this paper, we investigate
the generalization of invariant representations on out-of-distribution data and try to
answer the question: Do model representations invariant to some transformations
in a particular seen domain also remain invariant in previously unseen domains?
Through extensive experiments1, we demonstrate that the invariant model learns
unstructured latent representations that are robust to distribution shifts, thus mak-
ing invariance a desirable property for training in resource-constrained settings.

1 INTRODUCTION

In the real world, two images of the same object might only be related through some identity-
preserving transformations. Many interesting data properties have these inherent symmetries but
are represented in a way that does not attend to these symmetries. Prior work has revealed that
incorporating these correspondences in the network can improve model performance significantly
and make it more robust to variations in the data Cohen et al. (2019). Invariance in deep neural
networks refers to a model’s ability to produce the same output for a given input, regardless of
certain changes in the input. For instance, when presented with an image of an object, a translation-
invariant model will produce the same result regardless of the object’s location in the image. The
network achieves this property by detecting the presence of certain features in a local neighborhood.

Prior theoretical work shows that the complexity in recognition tasks is predominantly due to simple
transformations such as rotation, translation, viewpoint, and illumination nuisances that swamp the
intrinsic characteristics of the object Lee & Soatto (2011); Liao et al. (2013). Making a model
invariant to such transformations helps reduce the amount of training data required because the
model does not have to learn to recognize objects in all possible positions and orientations Zhu et al.
(2021).

Utilizing prior knowledge on intra-class variance resulting from transformations is an efficient tech-
nique that can be utilized in critical use cases with limited training data Rath & Condurache (2022);
Li & Li (2021). Since most downstream tasks, including object recognition and label prediction,
are invariant to specific group actions like translations and rotations, invariant models are extremely
useful Winter et al. (2022); Sohn & Lee (2012). We conjecture that the crux of object detection is to
achieve invariance to identity-preserving transformations without losing discriminability.

1https://github.com/GauriGupta19/Domain-Generalisation-in-Invariance
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Object recognition has potential applications across various fields, including Agriculture, where it
can be used to identify and count crops, monitor crop health, and detect the presence of pests and
diseases Yang et al. (2022). Also, in the Healthcare domain, it can help in identifying and tracking
patients, monitoring vital signs, and assisting with diagnosis and treatment Elakkiya et al. (2022).
However, these technologies are generally difficult to adopt in developing countries due to either data
scarcity or limited training resources. Thus, building resource-efficient object recognition systems
is of utmost importance as it can help bridge the digital divide, provide access to technology and
services, and improve people’s lives, especially in developing countries. These systems can also
help to reduce costs, increase efficiency, and create new opportunities for economic development.

In this paper, we show how learning invariant model representations is a resource-efficient solution
to the same underlying problem of object recognition. We are interested in algorithms that can
generalize well on previously unseen data, as humans are capable of doing. Consider a scenario in
which a model is trained on patient data from a specific population. Now, with each new patient,
the model training process must be repeated. This can be time-consuming and thus problematic,
especially in medical diagnostics where time is critical. Now, given a model trained on a particular
domain, we explore the notion of generalization of model performance on a new unseen domain.
We show that invariant representations learn domain-agnostic information from training data, which
is then used to generalize the classifier to new, previously unseen data without retraining.

Overall, the paper examines invariance to identity-preserving transformations as a property that is ro-
bust to domain shifts, i.e., invariant model generalization on new unseen data, imitating human-like
recognition. We find that despite using a very simple classifier (thresholding the similarity between
object representations), the model achieves strong performance in these highly unconstrained cases
as well.

2 RELATED WORK

Invariant networks use symmetries in the data which improves their performance and potentially
reduces the amount of data required for training Cohen & Welling (2016). Invariance can either be
learned or can be explicitly embedded in the network. The former approach includes techniques like
Data Augmentation which involve generating new data samples from the original data by applying
various transformations such as rotation, scaling, cropping, etc van Dyk & Meng (2001). Although
this improves generalization performance, it is inefficient in terms of training time and compute re-
sources Thomas et al. (2018). In explicit invariant integration, the model is designed in a way that
imposes constraints on the functions that are learned by the network, which therefore restricts the
model’s architecture design Schütt et al. (2018). For instance, graph neural networks have been used
to establish powerful prediction models through message passing on graph-structured data that are
invariant to permutation symmetries Gilmer et al. (2017). Invariance embedding in convolutional
neural networks (CNNs) has brought a paradigm shift in the analysis of images by detecting equiv-
ariant and invariant image features Lecun & Bengio (1995). Weight sharing is another approach for
incorporating invariance. This involves using the same set of weights for multiple network parts,
like different filters in a convolutional layer. This helps the network learn more general features that
are invariant to transformations. Invariance embedding in convolutional neural networks (CNNs)
has brought a paradigm shift in the analysis of images by detecting equivariant and invariant image
features Lecun & Bengio (1995). Deep transformation-invariant approaches have also been used for
clustering and aligning images Monnier et al. (2020).

While all of these previous works provide various methods for learning invariances in the network,
our work focuses on introducing transfer learning in object recognition by utilizing invariance gener-
alization in domain shift, which is perfectly useful in data-limited and resource-constrained settings.

3 ROBUSTNESS OF INVARIANT REPRESENTATIONS ON
OUT-OF-DISTRIBUTION DATA

We propose that deep models invariant to certain transformations should also generalize well to out-
of-distribution data, i.e., they should generate invariant representations even on data that the model
was not previously trained on. For instance, if a model is well trained on a particular dataset X1

making its representation invariant to rotation, the model should also be invariant to the rotations
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in data X2 it has never seen before. We investigate this notion of invariance for identity-preserving
transformations by performing experiments to verify if the model learned a data agnostic invariance
and disentanglement of information in the latent space. In particular, we examine the possibility
of representations that are invariant to all the task-irrelevant variabilities present in the datasets. To
the best of our knowledge, we are the first ones to investigate this claim for invariant deep learning
models.

4 METHOD

If a group G has an action on a data-space X , i.e, g(x) ̸= x, x ∈ X, g ∈ G. The invariant encoder η
maps the elements in the same orbit (here same class) in X to the same point (orbit) z ∈ Z = X/G
∀ g ∈ G, where z is the invariant representation in the latent space of all the data points in the
same orbit. That is, η(x) = z ∀ x ∈ Ox, Ox = {g(x) | g ∈ G}. However, the decoder δ at best
can map the invariant embedding η(x) to an element in the orbit of x, i.e., δ(η(x)) ∈ Ox for some
g ∈ G. We also need to extract the information of the group action g ∈ G under which the element
is transformed. Only then can we recover the original element in Ox. An encoder thus maps data
points to its invariant representation z and equivariant group action g, both of which are then used
as input to the decoder to reconstruct the original object. During inference, when g is identity, we
get the object in the standard viewpoint. This approach is general enough to be extended to any
kind of group transformation or even the composition of different transformations. For instance,
Bepler et al. (2019); Winter et al. (2022) show how the above approach can be extended to rotations,
translations, their composition, and other general coordinate transforms.

In this paper, we study the problem of identification or pair-matching, e.g., for face verification.
Given two images of objects never encountered during training, that are transformed under some
particular transformation, the task is to decide if they depict the same object or not. We used the
following procedure to assess the model’s adaptability to previously unseen out-of-distribution data.
The basic pipeline is shown in Figure 1. First, we train the invariant model on dataset X1 trans-
formed under some group G. To test the model’s performance on unseen data, a classifier classifies
two images of objects not seen before from dataset X2 as either “same” or “different” based on a
threshold. The classifier simply calculates the cosine similarity (a normalized dot product) between
the latent representations of the two object images and outputs “same” if it is more than a threshold
and “different” otherwise. We use this naı̈ve classifier since the goal is to determine the effectiveness
of these latent representations as a feature. We believe that accuracies for a majority of these tasks
can be enhanced by using more advanced classifiers.

Figure 1: Evaluation framework for pairwise matching

5 EXPERIMENTS

The goal of these experiments is to explore the unconstrained notion of domain generalization of
invariance under identity-preserving transformations. Here in these experiments, we study the per-
formance of rotation invariance which can be easily extended to other common identity-preserving
transformations. To test the model’s generalization on unseen data, we first train a model on a partic-
ular domain X1, which is then used to generate embeddings of the unseen domain X2. A classifier
then classifies two unseen images of objects from X2 as same or not. Borrowing the notations from
Section 4, a positive pair consists of an image and its rotated version i.e. (x1, gx1), x1 ∈ X2, g ∈ G.

3



Presented at Practical ML for Developing Countries Workshop, ICLR 2023

A negative pair consists of two randomly sampled images from X2 such that they belong to different
classes, i.e. (x1, x2), x1, x2 ∈ X2, s.t. Ox1

̸= Ox2
. The pipeline is shown in Figure 1. In our setup,

the test domain uses the entire orbit and never contains any of the same labels as the training domain.
We train both a vanilla VAE and a rotational invariant VAE (RotInvVAE ) inspired from Bepler et al.
(2019) and present our analysis in this section.

We perform experiments on the following datasets: MNIST, FashionMNIST, and the Labeled Faces
in the Wild (LFW) Huang et al. (2007), and show ROC curves for the above-described classification
task. These results clearly show RotInvVAE ’s high performance on all these datasets, depicting
that the model’s latent representations remain invariant to rotation even in the unseen domain. For
MNIST and FashionMNIST datasets, we first train the model on the training domain X1 which in-
cludes the labels from 0-4, and test on the remaining labels 5-9. The results can be found in Figure 2
(Top). Further, to verify the extent of generalization, we see that RotInvVAE ’s performance remains
consistently high even if we train on fewer and fewer labels across both MNIST and FashionMNIST
and test on the remaining labels as shown in Figure 2 (Bottom). This means that we only need to
train our model on very few labels and it will still perform well on unseen labels, making the model
robust to domain shift and reducing the amount of data required for training.

MNIST Analysis FashionMNIST Analysis

Figure 2: Analysis for MNIST and FashionMNIST is shown on the left and right respectively. X1: Training
domain, X2: Testing domain (Top) ROC curves for out-of-distribution domain generalization with X1 = rotated
MNIST/FashionMNIST 0-4, X2 = rotated MNIST/FashionMNIST 5-9 (Bottom) Area under the ROC curve
(AUC) for verification task as we vary the number of the classes in X1 where remaining classes form X2

For investigating performance across completely unconstrained tasks, we train the RotInvVAE
model on MNIST while testing on the FashionMNIST dataset and vice-versa, and present the con-
solidated results in Figure 3 (Right). It is interesting to note that the model performed well on
completely different data domains, even when we train on the MNIST dataset and tested on an un-
seen and much more complicated domain of FashionMNIST. Additionally, the results of RotInvVAE
on the LFW dataset face verification are even more encouraging. The implementation details and
the train-test split are as described in Section 5.1. The model essentially achieves invariance to the
identity-preserving transformation (i.e., rotation in this case) and performs exceptionally well on
unseen faces as well as shown in Figure 3 (Left).

We also visualize the latent space of both vanilla VAE and RotInvVAE (for dim z = 2) for the
experiments in Figure 2 for the MNIST dataset. As in Figure 4, we can see the latent space is divided
into well-structured clusters for the training class labels. Whereas in RotInvVAE , as compared to
vanilla VAE, the angles are randomly distributed in the latent space, indicating that the latent space is
invariant to the angle of rotation for the training dataset. The latent space of RotInvVAE is invariant
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Figure 3: ROC curves for (Left) Face verification on unseen LFW dataset with X1, X2 described in Section 5.1
(Right) Generalization on completely different OOD data (1) blue, orange - X1 = MNIST, X2 = FashionMNIST
(2) green, red - X1 = FashionMNIST, X2 = MNIST

to rotations even on out-of-distribution data, which is in coherence with our hypothesis. Not only
that, we also observe the emergence of clusters in the representation space for the new unseen labels
for RotInvVAE . A similar analysis on FashionMNIST is presented in Appendix A.

Vanilla VAE RotInvVAE

Figure 4: Visualization of latent space of (Top Left) Vanilla VAE on X1 = rotated MNIST 0-4 (Top Right)
RotInvVAE on X1 = rotated MNIST 0-4 (Bottom Left) Vanilla VAE on the unseen X2 = rotated MNIST 5-9
(Bottom Right) RotInvVAE on the unseen X2 = rotated MNIST 5-9

5.1 IMPLEMENTATION DETAILS

For implementing the LFW image dataset, we make a few transformations to make the data suitable
for our task and make training faster. We first crop the images around the face and then down-
sample (pixellate) them to size (50, 50). We then zero-pad the image to create a black background
to perform rotation in images without inducing a bias of background effects. For the train-test split,
we randomly sample face labels and include all faces with a given label in the test set until the size
of the test set is one-tenth of the dataset, which gives us the set X2. The remaining labels form our
training set X1. Images of a particular label either belong to the train or test set and are not shared
across these sets. Since the goal is to test the generalization of invariant representations, it is also
important to note that we compare an original image of an individual’s face (which belongs to the
unseen data domain) with the rotated version of the same image as a positive pair. For all these
experiments, the dimension of the latent representations is consistently kept at 10 to make a fair
comparison across the different models and datasets. The models are trained for 100 epochs.
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6 DISCUSSIONS AND CONCLUSION

In this work, we show that the model learns to generate data-agnostic representations invariant to
some group transformations that also generalize well on unseen data. The model learns the group
action that transforms the given data, instead of learning any particular intrinsic property of the
data. Prior work only involves training and testing invariant models on the same data distribution,
thus making our study unique and the first of its kind. This model property has applications in
recognition classifier systems like face verification, where the input data is usually only transformed
under some identity-preserving transformations. Through experiments, we show that the model
generalizes well on out-of-distribution data and does not need to be retrained every time on new
unseen objects. This makes the model resource and time-efficient which is particularly suitable for
deployment in developing countries with limited data and training resources. Despite our recognition
classifier’s simplicity, our model depicts compelling accuracy on multiple datasets. Future work
could extend this approach to other objects, datasets, and additional tasks.
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A APPENDIX

Vanilla VAE RotInvVAE

Figure 5: Visualization of latent space of (Top Left) Vanilla VAE on X1 = rotated FashionMNIST 0-4 (Top
Right) RotInvVAE on X1 = rotated FashionMNIST 0-4 (Bottom Left) Vanilla VAE on the unseen X2 = rotated
FashionMNIST 5-9 (Bottom Right) RotInvVAE on the unseen X2 = rotated FashionMNIST 5-9
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