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ABSTRACT

Open intent classification aims to simultaneously identify known and unknown
intents, and it is one of the challenging tasks in modern dialogue systems. While
prior approaches are based on known intent classifiers trained under the cross-
entropy loss, we presume this loss function yields a representation overly biased
to the known intents; thus, it negatively impacts identifying unknown intents. In
this study, we propose a novel open intent classification approach that utilizes
model calibration into the previously-proposed state-of-the-art. We empirically
examine that simply changing a learning objective in a more calibrated manner
outperforms the past state-of-the-art. We further excavate that the underlying rea-
son behind calibrated classifier’s supremacy derives from the high-level layers of
the deep neural networks. We also discover that our approach is robust to harsh
settings where few training samples per class exist. Consequentially, we expect
our findings and takeaways to exhibit practical guidelines of open intent classifi-
cation, thus helping to inform future model design choices.

1 INTRODUCTION

Background and Motivation Beyond the success of intent classification under the supervised
regime, one of the next challenges in the modern dialogue system is open intent classification
(Scheirer et al., 2013). While the number of intents in the training and test sets is the same un-
der the supervised setting (known as a closed-set setting), an intent classifier in the real world is
required to recognize unknown intents as well as known intents (Zhang et al., 2021). For example,
supposing the training set includes N intents, the open intent classification solves N + 1 classifica-
tion where the N + 1 th intent is a set of unknown ones (Shu et al., 2017; Lin & Xu, 2019; Zhang
et al., 2021). This open intent classification task is also related to open world recognition (Bendale
& Boult, 2016; Vaze et al., 2021) or out-of-distribution detection studies (Hendrycks & Gimpel,
2016; Liang et al., 2017) which are actively dealt with image domains, but it is specifically denoted
as open intent classification in a natural language processing domain.

Upon previously-proposed open intent classification methods, we figure out that most of these works
conventionally trained the closed-set classifier with a cross-entropy loss (Bendale & Boult, 2016;
Hendrycks & Gimpel, 2016; Prakhya et al., 2017; Shu et al., 2017; Lin & Xu, 2019; Zhang et al.,
2021). However, we doubt whether this use of cross-entropy loss is the utmost learning objec-
tive for identifying open intents. Previous open intent classification study highlighted that adequate
strength of decision boundaries among known intents is important for detecting unknown intents
(Zhang et al., 2021). To interpret, an inductive bias established with known intents should be neither
overly biased nor too loosely optimized. Not only in open intent classification but recently-proposed
state-of-the-art open world classification study in the computer vision domain also supports this
proposition: acquiring adequate representation power correlates to effective open world classifica-
tion performance (Vaze et al., 2021). But, as several works once pointed out, the cross-entropy loss
is known to convey an inductive bias that is excessively biased to the given labels because it enforces
the model to select one single label among the given label space (Recht et al., 2019; Zhang et al.,
2016). To this end, we assume the use of cross-entropy loss has room for improvement and aims to
provide an outperforming open intent classifier.
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Main Idea and Its Novelty Our work’s key proposition is utilizing model calibration during the
model training on known intents. Model calibration is a method that adjusts a model’s predicted
probabilities of outcomes to reflect the true probabilities of those outcomes (Nixon et al., 2019).
Referring to the calibration studies, the calibrated deep neural networks accomplished robustness
against various noises and perturbations (Müller et al., 2019; Pereyra et al., 2017). Inspired by
this finding, we presume that applying calibration to the cross-entropy loss will improve the induc-
tive bias’s quality and escalate the open intent classification performance. Accordingly, we select
state-of-the-art open-world classification methods in the text and image domains and simply ap-
ply calibration to their training procedure. Throughout our work, we firstly showed whether the
calibration improves inductive bias compared to the cross-entropy loss. Then, we further examine
whether our simple idea can outperform previous open intent classifiers in various problem settings
and how calibration changes the representation landscape in the trained model. Although our idea
seems to be simple, we highlight that the proposed open intent classifiers are novel because, to the
best of our knowledge, our approach is the first attempt to utilize calibration to improve open intent
classification performance in the text domain.

2 RELATED WORKS

Open Intent Classification Fei & Liu (2016) applied SVM with center-based similarity to solve
open set classification. Bendale & Boult (2016) preposed OpenMax model, which fits Weibull
distribution in the penultimate layer of the network. Prakhya et al. (2017) and Shu et al. (2017)
adopt the OpenMax model in open intent classification and show that convolutional neural networks
are good feature extractors in NLP domain. Hendrycks & Gimpel (2016) suggest that predict-
ing out-of-distribution example can be distinguished based on softmax probability. Subsequently,
post-processing-based methods were proposed. Lin & Xu (2019) apply Large Margin Cosine Loss
to the post-processing-based method; the model learns that it maximizes inter-class variance and
minimizes intra-class variance. Zhang et al. (2021) introduce learning adaptive decision bound-
ary(ADB) and centroid for open intent classification, which is a post-processing-based method. Shu
et al. (2021) use several data augmentation strategies to expand distribution shift examples on ADB.
Throughout the prior works, we analyze that a key takeaway of the precise open intent classification
method is establishing adequate decision boundaries among the known intent samples; it is also
usually denoted as appropriate tightness of decision boundaries (Zhang et al., 2021). As the afore-
mentioned methods commonly employed cross-entropy loss to train the known intent classifier, we
hypothesize it is not advantageous in establishing good decision boundaries. Under this motivation,
we aim to scrutinize optimal decision boundaries’ tightness through applying model calibration to
the know intent classifier.

Model Calibration Calibration reflects ground truth correctness likelihood in a predicted class
label. Guo et al. (2017) proposed temperature scaling to calibrate modern neural networks with
over-confident problems. Lee et al. (2017) suggests two additional terms on the original objective
function for detecting out-of-distribution. Kumar & Sarawagi (2019) presented that neural machine
translation models are miscalibrated. Desai & Durrett (2020) tried temperature scaling on BERT
and RoBERTa model, and analyzed their calibration over three tasks. In addition, they show that
further increasing empirical uncertainty help out-of-domain classification. Moreover, Müller et al.
(2019) shows label smoothing behaviors while training network and investigates the effect of label
smoothing, which improve model calibration. Among various methods in model calibration, we
employed label smoothing in the proposed methods for the following reasons: 1) it does not require
any validation set, 2) it directly influences the representation power of deep neural networks while
temperature scaling does not.

3 OUR APPROACH

This section illustrates detailed descriptions of the proposed open intent classifiers. First, among
numerous studies on open-world classification, we selected two state-of-the-art methods for image
and text domains. We selected the method proposed in Vaze et al. (2021) from the image domain
denoted as Logit-based Classifier (LC), whereas Adaptive Decision Boundary (ADB) (Zhang et al.,
2021) method is employed from the text domain. Note that both approaches utilize cross-entropy
loss during the model training. To calibrate these models, we apply label smoothing (Szegedy et al.,

2



Published as a conference paper at ICLR 2023

2016) with the calibration strength of α and denote them as Calibrated Logit-based Classifier (C-
LC) and Calibrated ADB (C-ADB), respectively. We hereby highlight that temperature scaling
approaches (Guo et al., 2017), which are other promising calibration methods, are not considered
in our work because they only change absolute logit values without any change in inductive bias.
We formalize the cross-entropy loss with label smoothing in equation 1. Note that K implies the
number of known intents, α stands for the calibration strength, pk and yLS

k means logit vector and
label-smoothed ground truth, respectively.

LLS(pk, y) =

K∑
k=1

−yLS
k log(pk) where pk =

ex
Twk∑K

i=1 e
xTwi

, yLS
k = yk(1− α) + α/K (1)

Calibrated Logit-based Classifier (C-LC) C-LC is an open intent classifier that shares the same
motivation with the LC, a recently-proposed open-world classification method (Vaze et al., 2021).
Its novelty exists in the calculation of confidence, because it illustrates that simply using the logit
vector before the softmax layer can surprisingly increase the open intent classification performance,
while most prior works used logit vectors after the softmax layer. During the training procedure, it
trains closed-set classifier with cross-entropy loss. Given a test sample, it LC recognizes unknown
intents if a given sample’s confidence yielded by the trained model is smaller than a preset threshold.
Note that this confidence is measured as the maximum value at the logit vector extracted from the
layer right before the softmax activation. Lastly, it selects the threshold as a mean confidence at
the training samples. On the aforementioend procedures of LC, we establish C-LC by changing the
learning objective from simple cross-entropy loss into the calibrated one, shown in Equation 1.

Calibrated ADB (C-ADB) C-ADB is another open-intent classifier proposed in our study. The
original ADB identifies unknown intents if a given sample locates far from the known clusters’
centroids in the latent space. To empower the model to find adequate decision boundaries’ tightness,
ADB trains the model with cross-entropy loss and boundary loss, where the boundary loss aims
to predict the radius of each known intent. We denote this training procedure as post-processing.
Given the trained model ϕ(x; θ), each known intent’s centroid (C1 · · ·CK) and radius (R1 · · ·RK)
in the latent space, ADB measures the distance (dk) between given sample’s representation and Kth
cluster’s centroid (Ck), and it is denoted as ||ϕ(xtest; θ) − Ck||. The ADB identifies given test
sample as known intent if dk goes smaller than Rk. If every dk goes larger than corresponding
Ck, it regards it as an unknown intent. We say this open intent classification procedure as post-
processing. While the LC simply predicts a given sample as an open intent when its confidence is
less than a preset thresdhold, we hereby highlight that ADB utilizes post-proceesor which utilizes
estimated distances in the latent space. On the aforementioend establishment procedures of ADB,
we calbrate the model with applying label smoothing toward the cross-entropy loss as shown in
Equation 2. We presume calibrated pre-processing procedure and post-processing would make a
synergy on identifying unknwn intents.

LC−ADB = LLS + LBoundary (2)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset and Problem Setting We utilized three public datasets (STACKOVERFLOW (Xu et al.,
2015), BANKING (Casanueva et al., 2020), OOS (Larson et al., 2019)), which are widely utilized
in open intent classification study (Lin & Xu, 2019; Zhang et al., 2021). We show a brief summary
of these datasets in Table 1. Upon these datasets, we postulate three problem settings with different
Known Label Ratios (KLR of 25%, 50% and 75%). The KLR implies the ratio of known labels
to the total number of labels. Supposing the scenario under the KLR of 25%, we use 25% of total
intents as known ones while the other 75% intents are set as unknown ones. We utilized accuracy
and F1-score on the test set as evaluation metrics. Given N intents for the known label, the open
intent classifier solves N + 1 classification where the added one label implies unknown intents. We
report the average performance over five runs of experiments for each known class ratio.
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Table 1: Descriptions of the utilized datasets.
Note that the OOS dataset has 150 intents in the
training and validation set, but one additional in-
tent exists in the test set.

STACKOVERFLOW BANKING OOS
Number of Intents 20 77 150(+1)

Training Set 9003 12000 15000
Validation Set 1000 2000 3000

Test Set 3080 6000 5700

Implementation and Training Details Both
C-LC and C-ADB utilizes pre-trained BERT
provided in Huggingface as a backbone fea-
ture extractor as Desai & Durrett (2020) once
urged that transformer-based language models
are more advantageous in open intent classifica-
tion. Given a pre-trained BERT, we implement
both C-LC and C-ADB by applying calibration
to each one’s learning objective. For training
details, we train these models with batch size of 128, optimized paramters with AdamW optimizer
(Loshchilov & Hutter, 2017). We set the learning rate as 2e-5 and scheduled with cosine scheduling.

Baselines We employed five baseline(MSP (Hendrycks & Gimpel, 2016), DOC (Shu et al., 2017),
OpenMax (Bendale & Boult, 2016), DeepUnk (Lin & Xu, 2019), ADB (Zhang et al., 2021)) open
intent classification methods to examine our approaches’ effectiveness. Brief elaborations on the
baseline approaches are described in the appendix A.1 due to page limits.

4.2 COMPARISON WITH BASELINES

Table 2: Comparative study of the proposed
methods with baselines. Our methods’ per-
formances are the best ones in Table 4.

STACKOVERFLOW BANKING OOS
KLR Model Accuracy F1-score Accuracy F1-score Accuracy F1-score

25%

MSP 28.67 75.89 43.67 50.09 47.02 47.62
DOC 42.74 76.77 56.99 58.03 74.97 66.37

OpenMax 40.28 77.45 49.94 54.14 68.5 61.99
DeepUnk 47.84 78.52 64.21 61.36 81.43 71.16

ADB 86.72 81.08 78.85 71.62 87.59 77.19
C-LC (OURS) 84.55 71.12 83.69 68.59 90.12 71.81

C-ADB (OURS) 90.07 83.85 83.58 75.46 91.65 81.45

50%

MSP 52.42 63.01 59.73 71.18 62.96 70.41
DOC 52.53 62.84 64.81 73.12 77.16 78.26

OpenMax 60.35 68.18 65.31 74.24 80.11 80.56
DeepUnk 58.98 68.01 72.73 77.53 83.35 82.16

ADB 86.4 85.83 78.86 80.9 86.54 85.05
C-LC (OURS) 80.50 76.18 79.98 77.34 85.52 76.55

C-ADB (OURS) 87.10 85.47 81.66 81.14 88.23 84.61

75%

MSP 72.17 77.95 75.89 83.6 74.07 82.38
DOC 68.91 75.06 76.77 83.34 78.73 83.59

OpenMax 74.42 79.78 77.45 84.07 76.8 73.16
DeepUnk 72.33 78.28 78.52 84.31 83.71 86.23

ADB 82.78 85.99 81.08 85.96 86.32 88.53
C-LC (OURS) 75.25 77.90 70.45 73.27 75.81 68.75

C-ADB (OURS) 82.24 85.41 78.82 83.66 84.60 85.18

Setup We implement baseline approaches described
in section 4.1, and compare the performances in var-
ious KLR levels. For the calibration strength of C-
LC and C-ADB, we used the ones which accomplish
the best accuracy in Table 4 at each KLR under each
dataset. The results are shown in Table 2.

Calibration is advantageous in low KLR We dis-
cover that the proposed methods accomplish promis-
ing open intent classification performances com-
pared to the baselines. Especially, the proposed C-
ADB outperforms the baselines in KLR of 25% and
50%, while it accomplises competitive performance
in 75% KLR. Unfortunately, C-LC achives promis-
ing performances but fail to outperform the prior
methods. For the C-ADB’s competitive performances in 75% KLR, we hypothesize that large KLR
setting is more difficult to sensitively discover an optimal calibration strength. As Zhang et al. (2021)
once urged, especially under the highly-complex decision boundaries, the calibration should have
to be carefully applied into the model to maximize the open intent classification. In other words,
when many known intents exist, careless calibration has higher risk of demolishing representations
on given data. However, we simply applied heuristically-chosen calibration strength (one among 0,
0.2, 0.5, 0.8, 0.9); thus, we expect this careless use of strength is related to the competitive perfor-
mance of C-ADB.

To experimentally excavate our hypothesis’s validity, we visualized the representations yielded from
the models at different KLRs. We visualized the representations extracted at the last layer of BERT
with t-SNE (Van der Maaten & Hinton, 2008), which is a conventionally utilized method of dimen-
sionality reduction, and the results are shown in Figure 1, 2. These results show that a model under
the large KLR exposes less-qualified representation clusters of known intents, which implies that a
model’s representation is insufficient to discriminate various known intents clearly. Referring to the
representation distribution under low KLR, known intents are clearly discriminanted regardeless.
Consequentially, we figure out that calibration is effective in escalating open intent classification
performances in low KLRs, but there should be more appropriate manner of selecting the calibra-
tion strength. One presumable solution is utilizing a learnable calibration strength for C-LC and
C-ADB, but we leave this point as an improvement avenue.

Validation set can improve C-LC We figured out that the proposed C-LC could not perform open
intent classification better than the original ADB and C-ADB. We analyze ADB-based methods’
effectiveness stems from the post-processing procedure as it establishes tighter decision boundaries
between known intents. Conversely, in C-LC, the lack of this post-processor might deteriorate to
discover adequate tightness of decision boundaries among known intents; therefore, it could not
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accomplish comparable performances with ADB-based methods. To improve this limit, we aim to
excavate further how we can elevate C-LC’s performances. We presume improving a threshold of
identifying unknown intents would additionally escalate the performance; thus, we utilized valida-
tion sets for choosing this threshold and denoted this method as C-LC-Val. The proposed C-LC-Val
uses a validation set consisting of samples from both known and unknown intents. While naive C-LC
sets a threshold as mean confidence in the training samples, C-LC-Val chooses a decision threshold
set by Youden’s J statistics (Youden, 1950) (which is commonly used to set optimal threshold in
ROC curve, as well as in prior works (Schisterman et al., 2005; Powers, 2011)). Note that the cali-
bration strength α for C-LC-Val is selected based on the best accuracy of C-LC in Table 4. Finally,
we compared the C-LC-Val’s performance with other options in Table 3. From Table 3, we scru-
tinize that C-LC-Val improves naive C-LC’s performances in several cases; thus, we conclude that
utilizing a validation set can be one presumable method to escalate C-LC’s performance. Compared
to naive C-LC, we highlight that this assumption of validation set is a limited setting as real-world
practitioners cannot always acquire unknown intent samples prior. But, we aim to show that the
practitioners can use C-LC-Val if they can acquire a particular amount of unknown intent samples.

(25%, 0.0) (25%, 0.9) (50%, 0.0) (50%, 0.9) (75%, 0.0) (75%, 0.9)

Figure 1: The representation distributions between known intent (colored) and unknown intent
(gray) samples in STACKOVERFLOW, where the representations are yielded by C-LC. Note that
the left element at the bracket implies KLR, and the right one means calibration strength.

(25%, 0.0) (25%, 0.9) (50%, 0.0) (50%, 0.9) (75%, 0.0) (75%, 0.9)

Figure 2: The representation distributions between known intent (colored) and unknown intent
(gray) samples in STACKOVERFLOW, where the representations are yielded by C-ADB. Note that
the left element at the bracket implies KLR, and the right one means calibration strength.

5 CONCLUSION

Table 3: Open intent classification perfor-
mances under the the validation set

STACKOVERFLOW BANKING OOS
KLR Model Accuracy F1-score Accuracy F1-score Accuracy F1-score

25%
C-LC 84.55 71.12 83.69 68.59 90.12 71.81

C-ADB 90.07 83.85 83.58 75.46 91.65 81.45
C-LC-Val 85.56 79.06 81.38 74.04 89.48 80.78

50%
C-LC 80.50 76.18 79.98 77.34 85.52 76.55

C-ADB 87.10 85.47 81.66 81.14 88.23 84.61
C-LC-Val 87.23 85.75 81.31 81.52 88.93 86.45

75%
C-LC 75.25 77.90 70.45 73.27 75.81 68.75

C-ADB 82.24 85.41 78.82 83.66 84.60 85.18
C-LC-Val 85.35 87.77 78.42 81.61 85.61 85.28

In this study, we propose novel open intent classifi-
cation methods that utilize label smoothing on prior
state-of-the-art methods. We experimentally show
this simple idea improves prior approaches’ perfor-
mance in particular settings as calibrated representa-
tion makes an adequate tightness on decision bound-
aries among known intents; thus, the proposed C-
ADB becomes a novel state-of-the-art in benchmark
settings. Furthermore, we also scrutinize that C-
ADB is less stable than C-LC under a few training
samples and leave the detailed analysis in our appendix; thus, we highly recommend that practition-
ers carefully utilize it on their own datasets. Nevertheless, several improvement avenues exist as
proposed in the prior sections. We expect practitioners in real world can use the proposed methods,
especially C-ADB, to establish effective NLP applications in their domains.
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A APPENDIX

A.1 BASELINES

• MSP (Maximum Softmax Probability) Hendrycks & Gimpel (2016) proposed that the
out-of-distribution example can be diverged based on the maximum softmax probability
when predicting the sample class.

• DOC Shu et al. (2017) applied the CNN layer to open intent classification and m 1-vs-rest
sigmoid classifier for m known classes instead of the softmax operation as the final layer.

• OpenMax Bendale & Boult (2016) is a computer vision open-set detection method of
distance-based. It applied extreme distribution of distances from the mean in each class to
distinguish open set examples.

• DeepUnk Lin & Xu (2019) replaces softmax loss with Large Margin Cosine Loss(LMCL)
in a feature extractor model(Bi-LSTM) and feeds these features to the Local Outlier Fac-
tor(LOF) for discovering open intent examples.

• ADB Zhang et al. (2021) ADB proposed the adaptive decision boundary, a post-processing
method, to create quality feature representation. Decision boundaries and centroid of each
pre-learned class are required for open classification.

A.2 DO CALIBRATION REDUCE THE BIAS OF CROSS-ENTROPY LOSS?

Setup We first and foremost scrutinize whether the calibration contributes to discriminating un-
known intents from the known labels. As we presume that the use of cross-entropy loss yields a
large bias to the known intents, we analyze whether the cross-entropy loss indeed exhibits insuf-
ficient discriminative decision boundary between known and unknown intents. Moreover, we also
aim to validate whether the calibration establishes a more distinct representation between known
and unknown intents. To excavate answers to these questions, we trained closed-set intent classifiers
with various calibration options: No calibration (label smoothing with strength α of 0) and label
smoothing with the strength of 0.2, 0.5, 0.8, and 0.9. Note that the larger strength implies stronger
calibration on the model. Given the trained classifiers, we extract the confidence scores (extracted
at the layer before the softmax activation) from known and unknown test samples and analyze their
distributions. We regard the more distinct distribution between known and unknown intents casts
better representation quality, because it implies the model posits more appropriate discriminative
decision boundaries We perform the analyses on three datasets under the 75% KLR, and visualize
the confidence distributions in Figure 3.

Result Following the results shown in Figure 3, we observe that cross-entropy loss exhibits a par-
ticular amount of adjoined area between known and unknown intents. Regardless of dataset types,
closed-set classifier poses particular amount of adjoined confidence distributions between known
and unknown intents; thus, we conclude that cross-entropy loss bears improvement avenue for more
effective open intent classification. We further scrutinize that calibration separates these two dis-
tributions by establishing a representation less biased to the known intents. Interestingly, the more
strong calibration exhibits a larger discrepancy between known and unknown labels in every KLR.
While we could not confidently say the stronger label smoothing creates a better representation for
discriminating unknown intents, we resulted that calibration is beneficial to establishing discrepancy
between known and unknown intents regardless of KLR levels.

A.3 WHAT IS OPTIMAL CALIBRATION STRENGTH?

Setup After we confirm the calibration as a presumable solution for the cross-entropy loss’s bias,
we then excavate what is an optimal calibration strength on C-LC and C-ADB. As the C-ADB has
additional post-processing procedure, we assume the adequate calibration strength will be differ
from the C-LC’s optimal one. To examine this question, we train C-LC and C-ADB along with
various calibration strengths, and check the open intent classification performances. We regard an
optimal calibration sterngth as the one acheive the best performance. The experiment results are
shown in Table 4.
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(a) 0 (b) 0.2 (c) 0.5 (d) 0.8 (e) 0.9

Figure 3: Distribution of maximum value of logit between known intent (blue) and unknown (or-
ange) intent samples under KLR of 75%. From top to bottom, each row indicates the dataset type of
STACKOVERFLOW, BANKING, and OOS. From left to right, each column indicates calibration
strengths of 0, 0.2, 0.5, 0.8, and 0.9. Note that blue and orange distribution implies known and
unknown intents, respectively.

Result From Table 4, it shows that each C-LC and C-ADB has different adequate calibration
strengths. We interpret this phenomenon highlights the importance of adequate decision bound-
aries’ tightness, that they should not be overly tightened for good open intent classification per-
formance. First, C-LC’s performance is maximized at the strongest calibration strength because a
closed-set intent classifier without any calibration does not tighten decision boundaries. As conven-
tional cross-entropy loss is insufficient in creating tight decision boundaries, it requires a substantial
impact on distinguishing known intent clusters for good performance; thus, applying the strongest
calibration was beneficial in elevating open intent classification performance. On the other hand,
C-ADB’s performance is maximized at moderate calibration strength. We analyze this phenomenon
occurs because the original ADB already bears tightened decision boundaries compared to the LC
as the ADB tightens the decision boundaries with post-processing procedure. Suppose we apply the
strongest calibration for C-ADB. In this case, we analyze the decision boundaries would become
overly tightened as both post-processing procedure and calibration simultaneously tighten the de-
cision boundaries. As the prior study (Zhang et al., 2021) once urged, overly tightened decision
boundary degrades the open intent classification performance. We presume a combined influence
from post-processing procedure and strong calibration creates extreme tightness of decision bound-
aries, which leads to inferior performance. Conversely, we presume an adequate tightness of deci-
sion boundaries is accomplished by combining post-processor and moderate calibration; therefore,
C-ADB with moderate calibration strength achieves the best performance. In a nutshell, we discover
that C-LC and C-ADB requires different calibration strenghs for effective open intent classifcation.
Furthermore, we confirm that open intent classifier indeed requires an adequate decision boundaries’
tightness level and re-assured that overly-tightened decision boundary degrades the performance.

A.4 STABILITY UNDER A FEW TRAINING SAMPLES

Setup We aim to further excavate whether the proposed methods robustly sustain their performances
under the low number of labeled training samples. We define the portion of labeled training samples
as Training Data Ratio (TDR), and configure the experiments with TDRs of 0.2, 0.4, 0.6, 0.8, and
1.0. Under the TDR of 0.2, it means there exist only 20% of labeled training samples per each intent.
The results are shown in Table 5 and Table 6. Note that α means the calibration strength and a bold
number implies the best performance at a given TDR setting.

Result We discover that key findings presented in the section 4.2 still exist unless there are fewer
training samples per class. Nevertheless, we observe that C-ADB is less stable than C-LC under
the various training samples per class; thus, we analyze that there should be a careful configuration
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Table 4: Open intent classification performances of the proposed C-LC and C-ADB along with
various calibration strengths. We scrutinize that each method acquires different calibration strengths
for the best performance.

Method C-LC C-ADB
Dataset STACKOVERFLOW BANKING OOS STACKOVERFLOW BANKING OOS

KLR Smoothing Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

25%

0.2 69.29 49.20 76.93 56.68 87.19 62.49 89.99 83.33 82.54 74.48 91.11 81.04
0.5 72.41 54.05 78.89 57.78 88.18 65.11 90.07 83.85 83.58 75.46 91.65 81.45
0.8 80.80 65.65 81.15 63.18 88.82 66.93 15.45 19.77 82.02 73.46 91.52 80.82
0.9 84.55 71.12 83.69 68.59 90.12 71.81 13.89 18.61 75.71 67.63 90.98 79.52

50%

0.2 76.12 68.04 73.05 62.76 79.42 59.72 87.09 85.51 81.52 81.43 88.23 84.61
0.5 76.61 69.01 75.79 68.61 81.45 64.98 87.10 85.47 81.66 81.14 88.23 84.15
0.8 78.37 71.33 79.08 75.31 84.19 72.70 84.76 83.04 80.88 79.94 87.97 83.54
0.9 80.50 76.18 79.98 77.34 85.52 76.55 22.35 27.60 79.79 78.38 87.84 83.33

75%

0.2 70.40 70.34 57.56 53.49 69.68 57.01 81.90 85.14 78.82 83.66 84.60 85.18
0.5 70.46 70.17 63.47 62.59 71.95 60.54 82.24 85.41 77.66 82.64 84.06 84.40
0.8 74.06 74.80 68.72 70.56 73.92 64.64 80.70 83.99 76.36 81.40 83.70 83.85
0.9 75.25 77.90 70.45 73.27 75.81 68.75 79.20 83.04 75.13 80.29 83.90 84.06

of C-ADB, especially under a few training samples. Following the results, C-LC’s performances
do not significantly change under various TDR levels, while C-ADB’s performances bear such high
variability. Particularly, C-ADB’s performance experiences a harsh drop under low KLR (i.e., 25%)
and high calibration strength. We presume the underlying reasons behind these phenomena are
also the tightness of decision boundaries. Supposing low TDR, a model would learn insufficient
knowledge during the training; thus, we expect it to risk overfitting and disqualified understanding
on known intents. Under the overfitted, disqualified representations, we presume applying calibra-
tion or post-processors (which escalated open intent classification performance under large training
samples) would not contribute to acquiring better decision boundaries. Accordingly, it degrades
the open intent classification performance. Therefore, we urge that applying calibrations or post-
processor is not a golden key to escalating performance in every circumstance. Still, we also dis-
cover that the landscape of performance change along with various KLR and TDR levels depends
on the dataset. We yield this analysis as an improvement avenue as it is not a core component of
our study. As a naive direction of analysis, we expect there should be a method of quantifying the
decision boundaries’ tightness for the open intent classification task. In a nutshell, we recommend
that NLP practitioners use the proposed C-ADB carefully. We highlight that C-ADB might yield
inconsistent performance if a few training samples exist on known intents.

Table 5: The proposed methods’ performances measured in accuracy under various TDR levels.

KLR TDR
STACKOVERFLOW BANKING OOS

C-LC C-ADB C-LC C-ADB C-LC C-ADB
α=0.2 α=0.5 α=0.8 α=0.9 α=0.2 α=0.5 α=0.8 α=0.9 α=0.2 α=0.5 α=0.8 α=0.9 α=0.2 α=0.5 α=0.8 α=0.9 α=0.2 α=0.5 α=0.8 α=0.9 α=0.2 α=0.5 α=0.8 α=0.9

25%

0.2 78.77 89.00 88.78 91.52 89.82 71.27 12.90 14.10 79.06 81.75 85.52 86.04 80.81 85.03 69.81 29.03 88.46 88.67 90.32 90.86 87.49 88.61 89.82 89.35
0.4 77.83 83.33 88.00 91.02 91.97 90.47 16.97 15.42 80.55 83.34 86.88 87.86 84.25 85.23 84.06 71.17 87.26 87.07 89.89 90.58 89.98 89.89 90.04 89.72
0.6 78.47 79.93 86.75 89.72 92.48 92.53 16.02 16.23 81.56 80.75 85.10 88.34 85.71 85.13 84.84 77.73 86.95 87.68 89.53 90.74 90.91 90.74 90.37 90.18
0.8 73.07 79.02 85.83 88.08 92.88 92.58 15.68 15.68 82.34 83.38 87.44 87.66 85.71 86.30 85.03 81.14 86.33 87.21 88.82 90.25 90.18 90.72 90.70 90.47
1 72.62 73.37 81.87 86.18 92.55 93.33 16.23 16.22 80.00 82.27 85.94 87.66 86.20 85.88 86.46 79.16 85.86 87.33 88.72 90.51 90.82 90.96 90.81 90.58

50%

0.2 85.83 79.23 80.62 83.73 88.45 88.12 85.97 19.45 68.31 74.77 76.95 75.29 74.97 76.82 76.53 74.58 79.00 80.60 82.58 83.93 85.65 85.42 84.79 83.84
0.4 84.60 82.72 82.02 84.20 88.85 88.55 87.15 19.93 72.40 76.01 78.41 78.38 79.74 79.58 80.29 78.47 79.11 80.53 83.25 84.54 86.95 87.04 86.47 86.14
0.6 82.00 84.15 83.23 83.68 88.88 88.65 87.20 23.23 69.51 71.79 76.95 78.44 81.79 81.75 81.23 79.94 78.11 80.07 83.19 83.47 87.30 87.46 87.54 87.32
0.8 82.37 80.75 79.12 83.22 88.92 88.75 87.63 23.48 70.52 73.38 78.90 79.48 81.82 82.34 81.59 79.84 78.46 80.77 83.04 83.39 87.67 87.42 87.35 87.70
1 85.35 80.58 79.77 81.43 88.87 88.85 87.23 23.07 69.58 73.12 77.27 78.51 82.95 82.79 81.85 80.55 78.89 80.49 83.12 83.75 88.00 88.07 88.19 87.54

75%

0.2 72.62 77.95 74.43 76.88 82.47 82.35 81.73 77.63 61.98 65.45 70.26 70.00 74.71 72.53 69.68 68.41 70.77 72.95 74.30 76.95 83.12 80.86 78.84 77.54
0.4 71.77 75.32 73.08 76.58 83.02 82.98 82.38 79.67 58.96 62.05 66.30 69.58 78.25 77.21 75.62 74.45 71.26 72.96 74.11 76.81 84.21 82.58 81.39 80.74
0.6 74.98 74.48 74.03 77.83 83.27 83.27 82.32 82.72 60.52 66.56 69.74 72.31 80.19 79.06 77.08 76.07 71.14 73.26 73.05 76.33 83.93 82.98 82.65 82.23
0.8 72.95 73.17 74.83 75.25 83.65 83.62 82.57 81.50 60.03 66.23 66.85 69.45 81.66 79.84 78.51 77.27 72.04 73.16 73.56 75.84 83.93 83.33 83.30 83.19
1 70.97 72.95 74.20 78.17 83.62 83.77 82.42 81.98 60.19 67.01 68.86 71.23 81.66 80.42 78.93 78.47 71.47 72.56 73.02 75.26 84.40 83.86 83.56 83.91

Table 6: The proposed methods’ performances measured in F1 score under various TDR levels.

KLR TDR
STACKOVERFLOW BANKING OOS

C-LC C-ADB C-LC C-ADB C-LC C-ADB
α=0.2 α=0.5 α=0.8 α=0.9 α=0.2 α=0.5 α=0.8 α=0.9 α=0.2 α=0.5 α=0.8 α=0.9 α=0.2 α=0.5 α=0.8 α=0.9 α=0.2 α=0.5 α=0.8 α=0.9 α=0.2 α=0.5 α=0.8 α=0.9

25%

0.2 63.09 82.69 75.43 81.37 83.00 70.82 17.55 18.11 64.19 68.62 72.75 71.82 68.13 71.82 60.81 39.92 65.83 66.97 75.11 76.26 71.52 72.33 72.81 71.93
0.4 61.27 76.25 79.93 82.76 85.74 84.23 20.53 19.92 68.40 68.38 74.64 77.55 74.16 74.80 72.64 63.94 63.50 62.19 75.27 77.40 76.35 75.13 74.59 74.71
0.6 74.72 71.83 72.42 78.88 86.45 86.54 21.02 21.07 71.91 62.47 68.43 79.34 77.22 75.95 75.34 69.76 63.02 64.86 73.51 78.43 78.95 78.05 76.40 76.18
0.8 58.91 64.07 75.11 74.69 87.01 86.54 22.52 22.47 70.74 69.86 74.64 77.47 77.14 78.55 75.57 71.83 58.51 63.41 69.29 74.91 77.99 78.73 78.23 77.51
1 52.16 48.23 65.93 71.10 86.54 87.69 21.71 21.66 67.13 63.42 70.27 76.77 78.39 78.04 78.09 70.17 56.54 62.82 69.48 75.83 79.36 79.35 78.37 77.56

50%

0.2 82.43 69.19 72.28 78.65 87.12 86.66 84.93 24.69 56.72 68.13 71.20 69.63 72.42 73.09 71.84 70.47 59.72 65.01 70.47 74.22 79.82 78.50 77.21 75.49
0.4 80.60 76.62 74.46 80.33 87.54 87.18 85.76 26.93 60.76 67.17 72.09 72.98 78.84 77.88 77.67 75.79 59.02 63.61 71.10 74.86 82.34 81.69 80.37 79.65
0.6 76.06 78.50 76.92 80.33 87.59 87.28 85.48 29.55 55.66 62.10 70.30 73.50 80.85 80.26 79.08 77.30 56.87 61.40 70.59 71.78 82.91 82.52 82.26 81.76
0.8 77.70 74.58 70.18 78.43 87.64 87.39 86.02 29.28 56.04 61.99 72.93 74.28 81.20 81.22 79.90 77.83 57.82 63.64 70.55 71.68 83.34 82.68 82.14 82.70
1 83.25 74.35 70.77 75.50 87.63 87.54 85.66 29.51 55.15 64.79 72.75 74.00 82.52 82.06 80.54 78.69 59.34 63.57 70.82 72.50 83.77 83.60 83.59 82.78

75%

0.2 73.70 78.89 73.48 79.83 85.77 85.64 85.09 82.83 59.54 64.29 71.65 71.45 78.82 76.73 73.61 71.69 58.05 62.59 66.06 71.82 83.24 80.30 77.70 75.98
0.4 70.46 73.54 70.89 79.05 86.24 86.19 85.61 83.95 50.96 57.17 64.94 69.91 82.30 81.29 79.57 78.38 58.37 61.98 64.46 69.94 84.57 82.29 80.64 79.85
0.6 74.09 72.45 71.73 80.81 86.46 86.44 85.58 86.08 53.52 64.17 69.83 73.06 84.47 83.32 81.29 80.09 58.13 61.69 62.08 68.74 84.16 82.74 82.24 81.79
0.8 71.58 71.03 73.55 77.20 86.78 86.73 85.76 85.22 51.94 63.41 65.09 69.04 85.62 84.02 82.63 81.39 59.94 61.54 62.73 67.40 84.10 83.18 83.03 82.86
1 69.82 71.12 73.21 80.72 86.75 86.87 85.60 85.59 53.50 64.81 68.13 71.88 85.58 84.57 83.11 82.66 59.45 60.87 61.95 66.63 84.84 84.04 83.46 83.89

A.5 WHY DO LABEL SMOOTHING CONTRIBUTE TO OPEN INTENT CLASSIFICATION?

Setup Lastly, we aim to excavate how the model calibration contributes to the escalation of open
intent classification performances. We hypothesize the answer would exist in the learned represen-
tations of the model; thus, we measured representation similarities between various models trained
under different calibration strengths. We establish five pairs consisting of models trained under dif-
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ferent calibration strength as follows: (0 v. 0), (0 v. 0.2), (0 v.0.5), (0 v. 0.8) and (0 v. 0.9). Given
these pairs, we quantitatively measure the similarity between two models in a pair by applying Cen-
tered Kernel Alignment (CKA) (Kornblith et al., 2019). CKA measures representation similarity
between two layers from different models and returns the similarity score between 0 and 1 (where
1 means the highest similarity). Among various methods in quantifying representation similarities,
such as CCA or SVCCA, we utilize CKA as it accomplished state-of-the-art performances in their
domain’s benchmarks (Kornblith et al., 2019; Wu et al., 2020; Sridhar & Sarah, 2020). Following
the prior work (Kornblith et al., 2019), we compared representation similarities at every LayerNorm
layer between two models in a given pair. We show representation similarities among various models
trained under STACKOVERFLOW dataset in Figure 4.

(a) C-LC (0,0) (b) C-LC (0,0.9) (c) C-ADB (0,0) (d) C-ADB (0,0.9)

Figure 4: Visualized representation similarities between a model without calibration and the one
with calibration.

Result Upon the Figure 4, for both C-LC and C-ADB, we scrutinize that model calibration yields
different high-level representations from the model without any calibration. While overall land-
scapes of representation similarities look similar regardless of calibration strengths, similarity at the
very last layer (11th layer) becomes less similar as long as the calibration strength increases. We
interpret this phenomenon implies that calibration makes the model’s high-level representation be-
comes different. Along with prior work’s analysis (Hao et al., 2019; Wu et al., 2020), we further
hypothesize that calibrated model bears a different contextual understanding of given text input. We
analyze calibrated model interprets the text input as less biased to the known intents; thus, it dis-
criminates unknown intents based on this qualified understanding of the text data. Note that this
analysis supports that calibrated model acquires ‘different’ representation from the not-calibrated
one, but it does not justify how the calibrated representation yields better open intent classification
performance. We let this point as an improvement avenue.
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