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ABSTRACT

In lending domains, machine learning can be used to learn a predictive model of
the probability of default (a “risk score”), this driving loan decisions. For simple
models, this brings the benefits of transparency and explainability, as well as guid-
ance in regard to recourse. An alternative is to use policy learning, that is, learning
a loan policy directly, and without concern to risk scoring. This emphasizes profit
and can speed up learning, but with a concomitant loss of transparency. In this pa-
per, we study a risk-score based policy learning method, demonstrating both good
profitability and transparency. We also define a recourse effort fairness metric,
and demonstrate that a risk score-based policy approach achieves optimal profits
and recourse effort fairness, along with explainability and transparency. For this
risk score-based policy approach, we further define and motivate the challenge
of recourse effort fairness portability, a desideratum in resource-scarce contexts
(e.g., developing countries), as a set-up for our ongoing work.

1 INTRODUCTION

A current practice in the use of machine learning to support lending decisions is to learn a predictive
model of risk to generate repayment probabilities that can be used to guide loan decisions. In
particular, credit scores are designed with the goal of accurately predicting default rates (Siddiqi,
2012). Beyond the transparency and explainability benefits that come from these risk models, there
are also regulatory frameworks, such as the U.S. Equal Credit Opportunity Act (ECOA) Regulation
B, that are based on risk models. An explicit risk score can also help protect against predatory
lending: a regulator can say “don’t lend to customers with a predicted default risk below a certain
threshold.”

Another advantage of accurate risk models is that they support transparency, for example, to explain
loan denial decisions (as required by law in some countries). Transparency of the basis for a decision
also helps with sense-checking and human scrutiny of decisions. A risk model outputs a value, i.e.,
the predicted risk of default, and since this output is grounded, its validity can be checked by a human
expert. A risk model also enables portability, where this is useful, whereby a model developed for
one context, can be used in another context and still achieve a desired objective. For example, if we
have two different lending markets, A and B, that differ in product and thus interest rate, a policy
approach trained on A would implicitly bake A’s interest rate within its learned policy, whereas a
suitable risk model can be employed in either market. In resource-constrained settings, such data
reuse may be critical to make optimal use of limited data, which may not be available across all
markets where the model could be deployed.

* Also with DeepMind, London, UK.
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Nevertheless, some, such as Kilbertus et al.|(2019), have observed that learning to predict accurately
may not maximize profit because it can attend to prediction errors that are immaterial to making
the right decision for a lender. Rather, they present a pipeline that adopts negated profit as the loss
functions, and directly learns a decision policy (and without learning an explicit risk model). We
argue that this approach can be undesirable because, without a risk model, the additional objectives
of explainability and transparency cannot be achieved. Moreover, the last decade has seen a steady
growth of machine-learning enabled credit scoring systems for lending in developing countries.
This has been made possible by the growth of new data streams, including from mobile phone use
behavior. However, this growth has not been accompanied by a commensurate focus on fairness
considerations in these resource constrained settings. In particular, we focus on recourse (Ustun
et al.; 2019) and ask whether a learning pipeline can provide for fairness in regard to the actions that
an individual can take to remedy a situation in which they are declined a loan. We ask whether we
can have the best of both of worlds. We study a risk-score based, policy learning method, which
makes use of an explicit risk model while also driving learning primarily by the consideration of
maximizing expected profit.

We introduce a new metric, which we call recourse effort fairness. We are motivated by Roemer’s
theory (Roemer & Trannoy, 2015} Beretta et al., 2021): A ranking is said to be fair if all individ-
uals belonging to different types have the same opportunity to reach a high ranking position, and
if relevance and exposure are given by personal responsibility and not by birth circumstances. In
our context, we can take type as demographic group, relevance as credit score, and exposure as loan
approval. In formalizing Roemer’s framework, we relate an individual to a cumulative distribution
function of their credit score, for individuals of the same type. Specifically, two individuals belong-
ing to a different type who occupy the same quantile in their respective distribution functions have
exerted the same level of effort and therefore the same level of responsibility. Given this, and in
the case of a deterministic loan policy, we define the recourse effort for an individual who does not
receive a loan as the minimum amount by which they must increase their quantile in this distribu-
tion in order to receive a loan. The recourse effort error is defined as the difference between the
actual recourse effort due to a learned model and the fair recourse effort, i.e., the recourse effort that
should be exerted given a ground truth model of an individual’s latent quality. A similar approach
is used by |Ustun et al.|(2019), who present cost functions for recourse based on score percentiles of
an individual in the target population.

In simulation, we introduce a new policy learning algorithm that makes use of an explicit risk model,
and adopt the evaluation metrics of lender profit, predictive accuracy, and recourse effort fairness.
We show that our model-based policy learning approach obtains near optimal profits across different
environments, whereas an accuracy driven, model-based approach is sub-optimal in more complex
environments. Further, model-based policy learning has higher recourse effort fairness and achieves
better accuracy than the other two approaches, also achieving better explainability.

Related work. Our paper is most closely related to that of Kilbertus et al.| (2019), who consider
lending as a problem with censored training data, where the repayment or default is only observed for
applicants who are approved loans. These authors adopt off-policy learning for this problem, making
use of importance weighting to give an unbiased profit estimator, and they adopt a randomized
decision policy and show how to directly learn a profit-maximizing loan policy over time. Our work
extends this approach to make it model-based while retaining loss defined as negated profit, so that
the policy is defined on the basis of an explicit risk model.

Our work also ties into the larger literature on machine learning and fairness (Dwork et al., 2011}
Hardt et al., 2016; Chouldechova,|[2016). In particular, some papers have made an explicit distinction
between predictions and decisions (Corbett-Davies & Goel, 2018} |Valera et al. 2018). Our work
follows this stream of treating label predictions and decisions as distinct, and broadly relates to
research on fairness for learning in dynamic environments e.g., (Hu & Chen, [2017)).

2 MODEL

In this section, we formalize the lending problem. We consider a loan approval problem where a
bank provides loans to applicants over each of T' > 1 periods for t € {0, 1,...,T}. We represent the
bank’s lending decision for an applicant using a policy function. Formally, a policy m : X — [0, 1]
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is a function that takes as input a vector of d features from a specific applicant, z € X C R? (e.g.,
x = (age, income,n_credit_cards), and returns the probability with which the individual is
assigned a loan. y € {0, 1} is a repayment indicator, where y = 1 if loan will be repaid, k € {0, 1}
is the loan amounts index set, [ € R is the loan amount, § € R? are the policy parameters, and
p(x) is repayment probability Pr(y = 1|x). = and y are sampled from a ground truth distribution
P(X,Y). The loan award decision k € {0, 1} is sampled from a policy ().

The bank considers a class of policy functions Ily. Each policy 7y is specified by a parameter vector
6 € R®. The optimal policy for a bank is 7; = arg max,, cp, u(m), where u : Il — R is a utility
function that measures a bank’s expected profit. In a setting where a bank lends $/ at an interest rate
a, it receives (1 + «) - [ if an applicant repays their loan, and loses —! if an applicant defaults on the
loan. Thus, the expected profit from making a loan is

The bank starts with an initial dataset of ny examples (x;, y;);-2,, for example by making loans for
a short period of time in pure exploration mode. At period ¢, the bank receives applications from
ng > 1 consumers, and samples a lending decision from 7;(k = 1|x;). At the end of period ¢
the bank updates the policy function using the dataset of n, training examples (;,y;);,, where
x; € X C R%is a vector of a; for applicant 4, and y; € {0, 1} is a label that is set as 1 if applicant
i repays the loan. The bank observes feature vectors x; for every applicant, but only observes y; for
applicants who receive a loan.

3 METHODOLOGY
In this section, we describe different approaches to learn a lending policy.

3.1 MODEL-BASED LEARNING — MODEL

The lender learns a repayment model, and acts myopically to maximize profit in each period given
the current model. In particular, the decision rule applies a hard threshold to the repayment proba-
bility; i.e., mg(k = 1| ) = 1(p(y = 1|x) > Th) where Th denotes the minimum predicted risk
needed to approve a loan. Setting Th = 1/(1 + «) maximizes expected profit.

3.2 PoLICY LEARNING — POLICY

The lender learns a loan approval policy that maps features to loan approval decisions (Kilbertus
et al., 2019). This approach avoids the need to learn a model to predict the risk of repayment, and
uses the data to train a parameterized policy function: mp(k = 1| x) = o (5 - 0 ¢(x)) € [0, 1]. The
expected profit under this policy can be determined by the ground-truth distribution P as in Equation
The policy is updated across periods through stochastic gradient ascent with learning rate n > 0.
Given that the data collected in a given lending period is induced by policies in prior periods, the
data suffers from selection bias. In turn, |Kilbertus et al.|(2019) compute an unbiased estimate of the
gradient on expected profit for policy 7y using weighted importance sampling as:

Vgtﬂ'gt(k = 1‘1) - 1 Vgtﬂgt(k' = 1|Iz) )
o (b= 1a) v1(y1)| & e ; o Uk = 1]7) vi(ys)] ()

Here n;_; is the number of loans approved by policy mg;—1 at period ¢ — 1. This gradient is then
used to update the policy as: V < V + nVgu(my).

ne—1

Vo, u(mg,) = Ex,yNPet_l

3.3 MODEL-BASED POLICY LEARNING — MBPoOL

The lender learns an explicit risk model with which to parameterize a decision policy, with learning
again adopting loss as negated expected profit. We refer to this new approach as model-based policy
learning and summarize the procedure in Algorithm [1|in the Appendix. We model the repayment
probability as p(y = 1|z, k = 1) = o(0 " ¢(x)), where o(a) = m and ¢(x) is a basis
function transformation of . Given this, we approve a loan with a policy decision that is defined as
a logit function on the expected utility (Equation [TT)),

mo(k = 12) = 0(8-v) = a(B-1- (a(0 é())(a+1) — 1)) € [0,1], 3)
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where 5 > 0 is a hyperparameter that controls the degree of exploration. A similar gradient com-
putation with weighted sampling is done, as in the case of policy learning, but as appropriate to this
new parametric form for the policy and as detailed in the Appendix. In particular, a model accuracy
penalization is applied to the SGA gradient update step: V < V + n(Vou(mg) —vVe(Py)), with v
as the penalization rate.

4 EXPERIMENTAL RESULTS

In this section, we present results from experiments on synthetic datasets where we compare these
different approaches to learning lending models. We evaluate the performance of each approach in
terms of multiple performance metrics, and across different kinds of data distributions that may arise
in practice.

4.1 METRICS
We consider the following performance metrics, evaluated after the final training period:

Profit: The lender utility is the average profit made per applicant.

Model Accuracy: We measure balanced accuracy, which is the average between the sensitivity and
the specificity; i.e., the average of the decision accuracy on positive and negative examples.

Model Calibration: We measure calibration using the root mean square error of the probability

predictions of a model over a sample with n points. The value is computed as \/ LS o (b — pi)?

where p; and p; denote the predicted and true values of the probability of repayment for person ¢,
respectively. Calibration can only be computed for methods that output probability predictions, and
is therefore marked “N/A” for Policy approach in Table

Recourse Effort Fairness. This fairness metric entails calculating the recourse effort error defined as
the absolute difference of actual recourse effort and fair recourse effort. This difference is only com-
puted among individuals who are denied loans — i.e., not approved (under a deterministic policy), or
who have a probability of approval 7(x) < 50% (under a stochastic policy).

We can define these terms for model-based methods as follows. Given an individual with a predicted
probability of approval 7w(x) € [0, 1], where 7(x) := 1[g(x) > Th], where Th is the loan approval
threshold, we define actual recourse effort(z) := min d(2’, z) s.t. w(z") > 0.5, where 7(z) € [0, 1]
is the probability of approval for a person with features z, and 6(2’, z) := F(2') — F(z), F(x) :=
Pr(f(X) < f(z)) is the CDF of true repayment probability f with respect to the random variable X .
We define fair recourse effort(x) = miné(a’, x) s.t. p(x’) > Th, where §(z', z) = F(2') — F(x),
and p(z’) is the true repayment probability for 2.

Methods. We consider the three methods, model-based learning, policy learning, and model-based
policy learning, over eight training periods, and with 1,000 new individuals per period.

Data Regimes. We evaluate each method in three data regimes shown in Fig. Each regime
assumes that the conditional probability of repayment Pr(y = 1 | x) follows a specific functional
form.: (1): LINEAR: Pr(y = 1| z) is a linear function of x. Here, x is Uniform[—2, 2]; (2): KINKED:
Pr(y = 1| ) is a generic function of z; i.e., non-monotonic with multiple optima and crossing the
profitability threshold multiple times. Here x ~ Uniform[—4,4]. y = 1/(1 + exp(—a)), where
a = —(z— (23/3!)) +1.4; (3) KINKED CENSORED: This is the same as the kinked data regime, but
with a region (x > 2) of the data distribution explicitly censored (unavailable) to the model in the
first lending period. This simulates the failure modes that happen with a non-exploring approach,
such as the model-based approach, when data may be missing over a region of feature values.

Training Protocol. We generate n = 1000 data points per period, and subject them to the training
protocol detailed in Algorithm 1 in the Appendixﬁ]
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Figure 1: Overview of true model Pr(y = 1|z) for different data regimes. Here x-axis is normalized
to 1. The dotted horizontal red line is the profit threshold; i.e., the probability of repayment above
which expected profit is non-negative.

Linear Kinked Censored
Metrics Model Policy MBPol Model Policy MBPol Model Policy = MBPol

Profit  $56 $55 $41 $65 $117 $ 117 $58 $ 120 $116
CAL 82% N/A  228% 49.5% N/A  234% 62.3% N/A 24.1%
B_Acc 0.7 0.697 0.715 0.94 0.81 0.87 0.997 0.84 0.87

Table 1: Profit (on $1000 Principal), Calibration Error (CAL), and Balanced Accuracy (B_Acc)
achieved by each method (MBPol = Model-based Policy) for three data regimes: Linear, Kinked,
and Censored.

4.2 RESULTS

In Table[Tjwe show the performance of the policies learned for each method over each data regime.
We see that the model-based policy learning approach, as well as the direct policy obtain near opti-
mal profit, for each of the Linear and Kinked environments, respectively. This includes the setting
where the data are censored, unlike the traditional model-based approach whose profits are sub-
optimal in the Kinked settings. Figure[2]shows that the model-based approach has a bigger recourse
effort error in the Kinked setting, both with and without censoring, because it fails to explore over a
sequence of multiple lending periods. Both the direct policy and the model-based policy handle this
problem well. However, as Table |1| shows, model-based policy learning achieves a higher accuracy
than the other approaches in the Kinked environment, meaning it enables better explainability. In
the same vein, model-based policy learning has lower calibration error than the model approach in
these complex settings.

5 CONCLUDING REMARKS

One of the present limitations of our recourse effort fairness metric is that it is lacking portability;
i.e., it is not yet evaluated in an environment with multiple markets, for example, where there are
different profitability thresholds due to multiple interest rates. A natural extension of this work,
therefore, is to examine the model-based policy approach for a band of thresholds in which the
actual threshold could fall. This is the subject of our ongoing research. For a learning approach to
achieve recourse effort fairness portability across markets, it needs to learn an accurate model in
the region where the profitability thresholds might fall. This guarantees that our definition of the
recourse effort fairness, which relies on minimizing the recourse effort fairness error, as detailed in
Section 3, will also be achieved in diverse markets.

' As explained there, the relevant hyperparameters are the learning rate 1), the steepness of the softmax slope
[, and the model-accuracy penalization rate y. We set these through a grid-search with twenty data seeds and
maximizing profit, which is arguably the most important desideratum for the lender.
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Figure 2: Actual effort juxtaposed against fair effort for different methods and data regimes, and for
a representative seed, showing larger divergence for the model-based approach compared to policy
and MBPolicy for the Kinked environment (whether censored or not).
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6 APPENDIX

6.1 MODEL-BASED POLICY LEARNING ALGORITHM

Input: Interest rate o, number of time steps T, number of loan applicants in each step N,
number of iterations per step M, mini-batch ratio B, loan levels L, learning rate n > 0,
model loss penalty rate -y > 0, stochasticity reduction 8 > 1.
Output: {0,}{_, {mo, }i—o
initialization;
0y < InitializeParameters();
while ¢ < T do
D + RunLendingCycle () ;
0:+1 < UpdateModelandPolicy ();
end
return {ot}zzo’ {mo, }tT:O )
Function RunLendingCycle (L, N,6,3):
D+ o,
for i =1...N do
(xi7yi) ~ P(xay)s
ki ~ Wa(ﬁa xl)’
if [; > 0 then
| D« DU{z, a4 ki, yi}:
end
end
return D ;

Function UpdateModelandPolicy (HI,D, M,B,n,7v):
00 0 ;
for j =1...M do
D’ + MiniBatch(D, B);
V<<0,n;<0;
for (z;,ki,y;) € D’ do
if L[k;] > O then
n; ++;

V+V+ 77<V9u(7r9) - ’yVeC(Pg)) ;

end
end
@it = Hj + %

end
return 6

Algorithm 1: Model-based policy learning

Table 2] summarizes the notation.
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SYMBOL MEANING

y € {0,1} repayment indicator, y = 1 if loan will be repaid
x = (x1,...,24) vector of d features

a>0 interest rate

te{0,1,...,T} time period

ke {0,1} credit limit levels index set

leR credit limit amount

6 € R4 policy parameters

D repayment probability Pr(y = 1|x)

Table 2: Notation

6.2 POLICY LEARNING

The lender learns a profit-maximizing policy directly from borrower and loan features without learn-
ing a repayment predictive model. This is the approach adopted by Kilbertus et al.| (2019). This
approach parametrizes the policy directly, mp(k = 1|x) = (3 -0 ¢(z)) € (0,1), where 3 > 0
is a parameter that adjusts the steepness of the logistic function, allowing us to control the desired
degree of exploration.

The expected utility/profit (based on ground-truth distribution P) is:
w(mg) = Egynpnmg() Lk =1y =1) - a-1) =1(y = 0) - ] + [1(k = 0) - 0]
The realized profit from a loan decision is:
al ifk=1y=1

vk(ye) = { =1 ifk=1,51=0 4)
0 ifk=0

To compute the expected profit gradient of a given policy 7y, and recognizing that the data observed
in a lending period is from a distribution induced by the current policy, mp, ,, we use weighted
importance sampling. In particular, we have:

Vo, 70, (k = 1|z)
T, (k = 1|z)

Vo, u(me,) = Bz ynp,, |

1 &K [V (k=1z)
)| ~ - > Dm0
5)

where n;_1 is the number of loans that were assigned a positive decision by the existing policy
To¢—1, 1.€., the policy from period ¢t — 1.

We need to compute the value of Vg, 7y, (k = 1|;) inside equation Reading the value of

mg(k = 1|z) from equation |8} and remembering that the derivative of the logistic sigmoid function

can be written in terms of itself as: a‘g(j) =o0(z)(1 —0(2)) we can rewrite this gradient as:

Vo, o, (k = 1]z;) = Vo (B : 9%(9@))

= B mg, (ki = 1|z;) - (1 — mo, (ki = 1]m;)) - ¢(4)

This gradient is used inside the UpdateModelandPolicy function in Algorithm , and can be written
out in full as:

ng—1

Vo,u(ma,) — 1 Z [W(k =1z;) - 1—n(k= 1|xi)v1(yi))

ne-1 7o, (k= 1]z;)

B ¢>(l’i)}

"https://dustinstansbury.github.io/theclevermachine/derivation-common-neural-network-activation-
functions
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This gradient is used to do the model update via SGA

One difference in implementation from what is shown in Algorithm [1}is that in Step 28, there’s no
penalization for model inaccuracy. That is:

V  V +nVu(mg)

As in the model-based policy learning approach, the policy here is exploring(stochastic).

6.3 MODEL-BASED POLICY LEARNING

The lender learns both an accurate model and a profit-maximizing policy simultaneously with the
learning primarily driven by profit-maximizing gradients for multiple thresholds.

Let’s illustrate the with binary decisions & € {0,1}. We first parametrize the model for the repay-
ment probability using a logistic (logit) function.

ply=1z,k=1)=0o(0" ¢(x)) (6)

where J(a) = m.

Denoting the probability that a loan is repaid as p, the expected utility v from a loan of size [ = 1 is
v=p-()+(1=p)- (=) =1 (pla+1)-1). ()

Assume, for ease of exposition, that [ = 1. In a deterministic threshold approach we would assign a
loan if this expected utility exceeds zero. In our model-based policy learning approach, we allocate
loans using a logistic policy, defined as a logit function of the expected utility:

mo(k = 1|z) = o(Bv) = a(ﬁ - (a(HTd)(x))(a +1)— 1)> €(0,1) (8)
where 8 > 0 is a parameter that adjusts the steepness of the logistic function, allowing us to control

the desired degree of exploration.

In the single threshold case, there’s only one interest rate « The realized profit from a loan decision
is:

al ifk=1y;=1
vk(yk) = —1 ifk=1,91=0 )
0 ifk=0

To compute the expected utility of a given policy 7y, and recognizing that the data observed in a
lending period is from a distribution induced by the current policy, 7, ,, we use weighted impor-
tance sampling (Mahmood et al.,[2014). In particular, we have:

u(mp) =

E 1(k=0)-0 +1(k:1)'vl(yl)
y~Fo, ko, (x) 7T9t71(k = 0|$) ﬂ—et—l(k = 1|‘T)

. o, (k= 0[2) -0 m, (k= 1jz) - v (y)
TP g, (k= 0fz) o, (k = 1[z)
g, (k = 1]x) - v1(y1)
B [ S (o

where
Pgt 1 X P(y|l‘) TTO, 4 (k = 1"7:) ' P(J))

10
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We take the gradient of the utility function:
Vo, 7o, (k = 1|z)
T,y (k = 1|1‘)

Vo, 70, (k = 1|xz)v (1)
o, (k= 1]z;) i

Vo,u(ms,) = Euyers, | [ m(yn}

Y

i=1

where n;_1 is the number of loans that were assigned a positive decision by the existing policy
To¢—1, 1.€., the policy from period t — 1.

We need to compute the value of Vg, g, (k = 1|z;) inside equation [11} Reading the value of
mo(k = 1|z) from equation 8] we can rewrite this gradient as:

Vo, 7o, (k = 1]2;)

= vgo<ﬁ L (00T () + 0a,)(a+ 1) — 1)>

= (a+1)mg, (ki = 1|z;) - (1 — 7o, (ki = |z;)) - B-1-p(1 = p) - p(xs)
where p = o (67 ¢(x;)).
This gradient is used to do the model update via SGA.

Vo,u(ma,) = — Z{vl(yi).(aJrl)W(k:1|$i)'(1—7f(k=1|$i))'ﬁ~l~ﬁ~(1—ﬁ)-¢(xi)

N1 im1 7T9t-1(k = 1‘%1)

11



	Introduction
	Model
	Methodology
	Model-based learning – Model
	Policy Learning – Policy
	Model-based policy learning – MBPol

	Experimental results
	Metrics
	Results

	Concluding Remarks
	Appendix
	Model-based policy learning algorithm
	Policy Learning
	Model-based policy learning


