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ABSTRACT

Web-scale search systems use a large neural network to embed the query which
is then hooked into a separate approximate nearest neighbour search (ANNS)
pipeline to retrieve similar data points. Such approaches use a rigid – potentially
high-dimensional – representation out of encoder to perform the entire search.
This can be far from optimal accuracy-compute trade-off. In this paper, we argue
that in different stages of ANNS, we can use representations of different capaci-
ties, adaptive representations, to ensure that the accuracy-compute tradeoff can be
met nearly optimally. In particular, we introduce AdANNS, a novel ANNS design
paradigm that explicitly leverages the flexibility and adaptive capabilities of the re-
cently introduced Matryoshka Representations (Kusupati et al., 2022). We demon-
strate that using AdANNS to construct the search data structure (AdANNS-C)
provides state-of-the-art accuracy-compute tradeoff; AdANNS powered inverted
file index (IVF) is up to 1.5% more accurate or up to 100× faster ImageNet-
1K retrieval. We also show that matryoshka representations can power compute-
aware adaptive search during inference (AdANNS-D) on a fixed ANNS (IVF)
structure and be up to 16× faster for similar accuracy. Finally, we explore the
applicability of adaptive representations across ANNS building blocks and further
analyze the choice of matryoshka representations for semantic search. Code is
open-sourced at https://github.com/RAIVNLab/AdANNS.

1 INTRODUCTION

Semantic similarity search (Johnson et al., 2019) on learned representations (Nayak, 2019; Wald-
burger, 2019; Neelakantan et al., 2022) is a major component in retrieval pipelines (Dean, 2009;
Brin & Page, 1998). In its simplest form, semantic search methods learn to embed queries as well
as a large number (N ) of data points in a d-dimensional vector space and retrieve the nearest (in
embedding space) examples for a given query. That is, per query, retrieval computation scales as
O(dN), where N is routinely higher than 1B. Owing to the infeasibility of exhaustive search, ap-
proximate nearest neighbor search (ANNS) (Indyk & Motwani, 1998) is now a standard approach
to reduce retrieval costs.

ANNS pipelines are built on the default Rigid Representations (RRs), typically high-dimensional
outputs from a neural network (Beaumont, 2021). Let us consider inverted file index (IVF) (Sivic &
Zisserman, 2003), a simple yet accurate ANNS technique at web-scale (Guo et al., 2020). IVF has
two stages (see Figure 4) during inference – mapping the query to a cluster of data points (Lloyd,
1982) and then a linear scan over all data points in the cluster to find the NN. Currently, IVF utilizes
the same high-dimensional RR for both phases, however, this design choice can be far from optimal
accuracy-compute trade-off.

We argue that utilizing different capacity representations with similar semantic information for clus-
tering and linear scan can lead to a better ANNS index. But how do we find such adaptive repre-
sentations? These desired adaptive representations should be cheap to get and provide accurate low-
dimensional representations that have some semblance to the high-dimensional representation. The
low-dimensional embeddings help in better clustering while being aware of the high-dimensional
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embeddings used for the linear scan. Post-hoc dimensionality reduction techniques like SVD (Golub
& Kahan, 1965) and random projections (Johnson, 1984) on high-dimensional RRs are potential
candidates but fail to preserve the overall geometry of the embedding space and are highly inaccu-
rate (Figure 2).

In contrast, we identify that the recently proposed Matryoshka Representations (MRs) (Kusu-
pati et al., 2022) align well with the desired properties of adaptive representations. Ma-
tryoshka representations pack information in a hierarchical nested manner ie., the first m-
dimensions of the d-dimensional MR form an accurate low-dimensional representation while
being aware of the information in the higher dimensions. This allows us to deploy MRs
in two ways as part of IVF: (a) construction with approximate clustering and (b) in-
ference with approximate distance computation using representations of varying capacities.
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Figure 1: AdANNS powered by the built-in adaptivity of
matryoshka representations (Kusupati et al., 2022) signifi-
cantly outperforms the status quo ANNS using Rigid-IVF
(IVF-RR) (Sivic & Zisserman, 2003). AdANNS-IVF can
be either 100× more efficient or 1.5% more accurate than
Rigid-IVF .

In this paper, we propose the use
of adaptive representations across
different stages of ANNS to en-
sure near optimal accuracy-compute
trade-off. As an effort in this di-
rection, we introduce AdANNS1, a
generalizable paradigm for ANNS
that explicitly leverages the adap-
tive capabilities of matryoshka rep-
resentations. AdANNS is applica-
ble to both construction (AdANNS-
C), through design adaptivity, and in-
ference (AdANNS-D), through dis-
tance adaptivity, of ANNS data struc-
tures. We show that AdANNS-
C achieves near-optimal accuracy-
compute trade-off while AdANNS-D
enables compute-aware elastic search
on pre-built indices.

Specifically, AdANNS construction of IVF (AdANNS-IVF-C) results in a significant improvement
in accuracy-compute trade-off over existing IVF indices on rigid representations (see Figure 1) – up
to 1.5% more accurate for same compute and 100× lower compute for same accuracy on ImageNet-
1K 1-NN retrieval (Section 4.1). At the same time, AdANNS-IVF-D can enable compute-aware
search during inference on ANNS structures pre-built on high-dimensional MR. We observe that
adaptive inference results in up to 16× faster yet similarly accurate search on an IVF structure built
on 2048-d MR (Section 4.2).

In summary, the adaptive nature of AdANNS powered by matryoshka representations demonstrate
the suitability of our method for deployable search in compute-restricted environments.

2 RELATED WORK

In this paper, we investigate the utility of adaptive representations – embeddings of different di-
mensionalities having similar semantic information – in improving the design space of ANNS al-
gorithms. This helps in transitioning out of restricted construction and inference on rigid repre-
sentations for ANNS. To this end, we extensively use Matryoshka Representations (Kusupati et al.,
2022) which have desired adaptive properties in-built. To the best of our knowledge, this is the first
work to leverage adaptive representations for different phases of ANNS data structure construction
and inference thus improving accuracy-compute trade-off. A detailed discussion of related work is
provided in Appendix B.

1Pronounced “A Dance”
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3 PROBLEM SETUP, NOTATION AND PRELIMINARIES

The problem setup of approximate nearest neighbor search (ANNS) consists of a database of N data
points, [x1, x2, . . . , xN ], and a query q where the goal is to “approximately” retrieve the nearest data
point to the query. Both the database and query are embedded to Rd using a representation function
ϕ : X → Rd, often a neural network that can be learned through various paradigms of representation
learning (Bengio, 2012; He et al., 2016; Nayak, 2019; He et al., 2020; Radford et al., 2021).

The d-dimensional representations from ϕ can also have a nested structure in-built – Matryoshka
Representations (MRs) (Kusupati et al., 2022) – ϕMR(d). MR inherently contains low-dimensional
representations of varying granularities that can be accessed for free – first m-dimensions (m ∈ [d])
ie., ϕMR(d)[1 : m] from the d-dimensional Matryoshka Representation (MR) form an m-dimensional
representation which is as accurate as its independently trained rigid representation (RR) counterpart
– ϕRR(m). A detailed discussion of experimental setup can be found in Appendix D.

4 AdANNS – ADAPTIVE ANNS

Construction and inference of common ANNS data structures like IVF (Sivic & Zisserman, 2003),
HNSW (Malkov & Yashunin, 2020) etc., can be split into multiple components that can leverage
adaptive representations. For example, IVF can be divided into its clustering and linear scan compo-
nents. Each of these components can utilize representations of different dimensionalities i.e, we can
use a 32-d representation for clustering, and then during the search, we can select the cluster using
a 32-d representation and follow up with a more accurate linear scan using 2048-d. In principle,
we can leverage different representations for different phases of ANNS which forms the ethos of
AdANNS.

The challenge is to obtain adaptive representations, embeddings of varying capacities/dimensional-
ities but containing similar semantic information. A common way is to use post-hoc dimensionality
reduction (SVD (Golub & Kahan, 1965) and random projection (Johnson, 1984)) on the highest-
dimensional (2048-d) rigid representation (RR) but these are often inaccurate. While independently
learned rigid representations (RRs) can be used to achieve this, it is often expensive to store copies
of the database with varying dimensionalities along with multiple expensive model inferences for
the query. We find that utilizing RRs of varying dimensionalities, results in less accurate adaptive
ANNS indices than the matryoshka representation powered AdANNS due to the relative indepen-
dence present across RRs (See Figure 2). Matryoshka Representations (MRs) solve these issues
with their inherent multi-granularity and thus align well with our objectives for ANNS design with
adaptive representations.

We present AdANNS, a novel design paradigm powered by the inherent flexibility of Matryoshka
Representations. In this paper, we instantiate AdANNS in IVF framework (AdANNS-IVF) but it
can also be easily integrated into core ANNS data structures like HNSW making AdANNS comple-
mentary to other ANNS techniques. Before delving further into AdANNS, we exposit two notions
of adaptivity that can be leveraged through AdANNS in IVF.

Tale of two approximations. Clustering in IVF happens on high-d representation (2048-d) and
can be approximated accurately using low-d representations (32-d). During inference, after finding
the most relevant cluster for the query using 32-d, we can proceed to linear scan the data points
in the cluster with a higher-dimensional representation (128-d). This can be easily enabled us-
ing Matryoshka Representations and we call it AdANNS-IVF-C (for construction) – Section 4.1.
AdANNS-IVF-C caters to scenarios that require precise control over accuracy-compute trade-offs
during construction, inference, and maintenance.

At the same time, when an IVF index is built on a high-dimensional (2048-d) representation infer-
ence can be done with approximate distance computation using a low-dimensional alternative. This
is naturally enabled by Matryoshka Representations because of the accurate low-d representations
present within for free. We call this AdANNS-IVF-D (for distance computation, see Section 4.2).
Typically, product quantization (PQ) (Jegou et al., 2010) is used for cheaper distance computation
in composite ANNS indices (Jaiswal et al., 2022) and remains complementary to AdANNS-IVF-D.
AdANNS-IVF-D caters to scenarios that demand elasticity of search on a single database across var-
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ious deployment requirements. Please see Table 1 for precise mathematical formulae corresponding
to inference on IVF and both variants of AdANNS-IVF.

In this section, we describe and evaluate the two variants of AdANNS: (a) AdANNS-C which
leverages adaptive representations during construction and inference, and (b) AdANNS-D which
enables inference-time elastic-search with adaptive distance computation.

4.1 AdANNS-IVF-C

AdANNS-IVF-C decouples the clustering, with dc dimensions, and the linear scan within each
cluster, with ds dimensions – setting dc = ds results in non-adaptive regular IVF. This helps in the
smooth search of design space for the optimal accuracy-compute trade-off.

Experimentation on regular IVF with MRs and RRs (IVF-MR & IVF-RR) of varying dimensional-
ities and IVF configurations (# clusters, # probes) shows that (Figure 2) matryoshka representations
result in significantly better compute-accuracy trade-off. We further studied and found that learned
lower-dimensional representations offer better compute-accuracy trade-offs for IVF than higher-
dimensional embeddings (see Appendix I for more results).

AdANNS utilizes d-dimensional matryoshka representation to get accurate dc and ds dimen-
sional vectors with no extra compute cost. The resulting AdANNS-IVF-C provides a much better
accuracy-compute trade-off (Figure 2) compared to IVF-MR, IVF-RR, and MG-IVF-RR– multi-
granular IVF with rigid representations – a strong baseline that uses dc and ds dimensional RRs.
Finally, we exhaustively search the design space of IVF by varying dc, ds ∈ [8, 16, . . . , 2048], num-
ber of clusters in k ∈ [8, 16, . . . , 2048]. Please see Appendix K for more details.
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Figure 2: 1-NN accuracy using AdANNS-IVF-C compared
across various rigid and adaptive baselines shows it achieves
near-optimal accuracy-compute trade-off. Both adaptive
variants of MR and RR significantly outperform their rigid
counterparts while post-hoc compression on RR using SVD
lags behind.

Empirical results. Figure 2 shows
that AdANNS-IVF-C outperforms
the baselines across all accuracy-
compute settings. AdANNS-IVF-C
results in 10× lower compute for the
best accuracy of the extremely expen-
sive MG-IVF-RR and non-adaptive
IVF-MR. Specifically, as shown in
Figure 1, AdANNS-IVF-C is up to
1.5% more accurate for the same
compute and has up to 100× lesser
FLOPs/query than the status quo of
performing ANNS on rigid repre-
sentations (IVF-RR). We filter out
points for sake of presentation and
encourage the reader to check out
Figure 10 in Appendix K for an ex-
pansive plot of all the configurations
searched.

The advantage of AdANNS for con-
struction is evident from the improve-
ments in IVF (AdANNS-IVF-C) and can be easily extended to other ANNS structures. For example,
HNSW consists of multiple layers with graphs of NSW graphs (Malkov et al., 2014) of increas-
ing complexity. AdANNS can be adopted to HNSW, where the construction of each level can
be powered by appropriate dimensionalities for an optimal accuracy-compute tradeoff. In general,
AdANNS provides fine-grained control over compute overhead (storage, working memory, infer-
ence, and construction cost) during construction and inference while providing the best possible
accuracy.

4.2 AdANNS-IVF-D

AdANNS-C structures cater to many specific large-scale use scenarios that need to satisfy
precise resource constraints during construction as well as inference. However, in many

4



Published as a conference paper at ICLR 2023

Table 1: Mathematical formulae of the retrieval phase across various methods built on IVF. See
Section 3 for notations.

Method Retrieval Formula during Inference

IVF-RR argminj∈Ch(q)
∥ϕRR(d)(q)− ϕRR(d)(xj)∥, s.t. h(q) = argminh ∥ϕRR(d)(q)− µ

RR(d)
h ∥

IVF-MR argminj∈Ch(q)
∥ϕMR(d)(q)− ϕMR(d)(xj)∥, s.t. h(q) = argminh ∥ϕMR(d)(q)− µ

MR(d)
h ∥

AdANNS-IVF-C argminj∈Ch(q)
∥ϕMR(ds)(q)− ϕMR(ds)(xj)∥, s.t. h(q) = argminh ∥ϕMR(dc)(q)− µ

MR(dc)
h ∥

MG-IVF-RR argminj∈Ch(q)
∥ϕRR(ds)(q)− ϕRR(ds)(xj)∥, s.t. h(q) = argminh ∥ϕRR(dc)(q)− µ

RR(dc)
h ∥

AdANNS-IVF-D argminj∈Ch(q)
∥ϕMR(d)(q)[1 : d̂]− ϕMR(d)(xj)[1 : d̂]∥, s.t. h(q) = argminh ∥ϕMR(d)(q)[1 : d̂]− µ

MR(d)
h [1 : d̂]∥

IVFPQ argminj∈Ch(q)
∥ϕPQ(m,b)(q)− ϕPQ(m,b)(xj)∥, s.t. h(q) = argminh ∥ϕ(q)− µh∥

cases, construction and storage of the indices are not the bottlenecks or the user is un-
able to search the design space. In these settings, AdANNS-D enables adaptive infer-
ence through accurate yet cheaper distance computation using inherent low-dimensional rep-
resentations of the matryoshka representation. Akin to composite indices (Appendix J)
that use PQ vectors for cheaper distance computation, we can use the low-dimensional
MR for faster distance computation on ANNS structure built with a high-dimensional MR.
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Figure 3: AdANNS-IVF-D enables adaptive inference us-
ing low-dimensional MRs on IVF built using 2048-d MRs
that can be used based on deployment requirements on a
shared index/database.

Empirical results. Figure 3 shows
the results of AdANNS-IVF-D using
various low-dimensional representa-
tions on an IVF-MR built with 2048-
d. We notice that AdANNS-IVF-D
can enable up to 16× faster search
for a minimal (< 0.5%) loss in ac-
curacy. This enables elastic latency-
aware search during inference and
generalizes to other data structures
when built with matryoshka repre-
sentations. Lastly, adaptive inference
with MR (AdANNS-D) provides an
accurate end-to-end learned alterna-
tive to the existing posthoc compres-
sion methods for faster distance com-
putation. Please see Figure 6b in Ap-
pendix I.2 for an analysis across dimensionalities on cluster selection.

We discuss the ideal scenarios for choosing between AdANNS-C and AdANNS-D in Ap-
pendix K.1. While we have utilized real-valued representations for distance computation in
AdANNS, this is complementary to the ubiquitous strategy of utilizing product quantization for
further speeding-up search. The complementary relation between PQ and MRs along with IVFPQ
can be found in Appendix F. We also provide psuedocode for AdANNS in Appendix A.

5 CONCLUSIONS

ANNS methods typically use a fixed (high-dimensional) representation for both query and the doc-
ument. We proposed a novel approach based on usage of adaptive representations for different
phases of ANNS pipelines. Our AdANNS paradigm leverages the inherent adaptivity of ma-
tryoshka representations Kusupati et al. (2022) during the construction and inference of ANNS
structures. AdANNS’s variants achieves SOTA accuracy-compute trade-off, while also ensuring
compute-aware elastic search. We also found that AdANNS is generalizable and complementary to
other ANNS techniques. Finally, the efficiency provided by AdANNS during both search structure
construction and inference enables deployable, adaptive search in compute-restricted environments.
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A AdANNS CODE

Algorithm 1 AdANNS Psuedocode

# Index database to construct clusters and build inverted file
system

def adannsConstruction(database, d_cluster, num_clusters):
# Slice database with cluster construction dim (d_cluster)
xb = database[:d_cluster]
cluster_centroids = constructClusters(xb, num_clusters)

return cluster_centroids

def adannsInference(queries, centroids, d_shortlist, d_search,
num_probes, k):
# Slice queries and centroids with cluster shortlist dim (

d_shortlist)
xq = queries[:d_shortlist]
xc = centroids[:d_shortlist]

for q in queries:
# compute distance of query from each cluster centroid
candidate_distances = computeDistances(q, xc)
# sort cluster candidates by distance and choose small

number to probe
cluster_candidates = sortAscending(candidate_distances)[:

num_probes]
database_candidates = getClusterMembers(cluster_candidates)
# Linear Scan all shortlisted clusters with search dim (

d_search)
k_nearest_neighbors[q] = linearScan(q, database_candidates,

d_search, k)

return k_nearest_neighbors

B RELATED WORK

Approximate nearest neighbour search (ANNS) is a paradigm to come as close (Clarkson, 1994) to
retrieving the “true” NN without the exorbitant search costs (Indyk & Motwani, 1998; Weber et al.,
1998). The “approximate” nature of the search comes from data pruning as well as the cheaper
distance computation that make real-time web-scale retrieval possible. In its naive form, NN-search
has a complexity of O(dN); d is the data dimensionality used for distance computation and N is the
number of data points in the database. ANNS employs each of these approximations to reduce the
linear dependence on the data dimensionality (cheaper distance computation) and data points visited
during the search (data pruning).

Cheaper distance computation. From a bird’s eye view, cheaper distance computation is always
obtained through dimensionality reduction (quantization included). PCA/SVD (Golub & Kahan,
1965; Jolliffe & Cadima, 2016) can reduce dimensionality and preserve distances only to a limited
extent without sacrificing accuracy. On the other hand, quantization-based techniques (Gray, 1984;
Jegou et al., 2010; Ge et al., 2013; Chen et al., 2020) have proved extremely crucial for relatively
accurate yet cheap distance computation and simultaneously reduce the memory overhead signif-
icantly. Another naive solution is to independently train the representation function with varying
low-dimensional information bottlenecks (Kusupati et al., 2022). Despite being extremely accurate,
such representations are rarely used owing to the costs associated with maintaining multiple models
and databases for each dimensionality.
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Data pruning. Enabled by various data structures, data pruning reduces the number of data points
visited as part of the search. This is often achieved through hashing (Datar et al., 2004; Salakhutdi-
nov & Hinton, 2009), trees (Friedman et al., 1977; Sivic & Zisserman, 2003; Bernhardsson, 2018;
Guo et al., 2020) and graphs (Malkov & Yashunin, 2020; Jayaram Subramanya et al., 2019). More
recently there have been efforts towards end-to-end learning of the search data structures (Kraska
et al., 2018; Kusupati et al., 2021; Gupta et al., 2022). However, web-scale ANNS indices are often
constructed on rigid d-dimensional real vectors using the aforementioned data structures that assist
with the real-time search. For a more comprehensive review of ANNS structures please refer to (Cai,
2021; Li et al., 2020; Wang et al., 2021)

Composite indices. ANNS pipelines often benefit from the complementary nature of various
building blocks (Johnson et al., 2019; Radford et al., 2021). In practice, often the data structures
(coarse-quantizer) like IVF and HNSW are combined with cheaper distance alternatives like PQ
(fine-quantizer) for massive speed-ups in web-scale search. While the data structures are built on
d-dimensional real vectors, past work and deployments consistently show that PQ can be safely used
for distance computation during search time. As evident in modern web-scale ANNS systems like
DiskANN (Jayaram Subramanya et al., 2019), the data structures are built on d-dimensional real
vectors but work with PQ vectors (often 32-byte) for fast distance computations.

Status quo. Despite the Herculean advances in representation learning (He et al., 2016; Radford
et al., 2021), ANNS progress is often only benchmarked on fixed representation vectors provided
for about a dozen million to billion scale datasets (Aumüller et al., 2020; Simhadri et al., 2022) with
limited access to the raw data. This resulted in the improvement of algorithmic design for rigid
representations (RRs) that are often not specifically designed for search. All the existing ANNS
methods work with the assumption of using the provided d-dimensional representation which might
not be Pareto-optimal for the accuracy-compute trade-off in the first place. Note that the lack of
raw-image-based benchmarks led us to use ImageNet-1K and ImageNet-4K (Kusupati et al., 2022)
based image retrieval for experimentation.

C IMPLEMENTATION DETAILS

A bulk of our experimentation was carried out via Faiss Johnson et al. (2019), a library for effi-
cient similarity search and clustering. AdANNS was implemented from scratch due to difficulty
in decoupling clustering and linear scan with Faiss. All ANNS experiments (HNSW, HNSWPQ,
IVFPQ) were run on an Intel Xeon 2.20GHz CPU with 12 cores. Clustering (IVF-MR and IVF-
RR), Adaptive Retrieval (AdANNS-IVF and MG-IVF-RR) and Exact Search experiments were
run with CUDA 11.0 on a A100-SXM4 NVIDIA GPU with 40G RAM.

D EXPERIMENTAL SETUP

We evaluate the ANNS algorithms while changing the representations used for the search thus mak-
ing it impossible to evaluate on the usual benchmarks (Aumüller et al., 2020). Hence we experiment
with the public ImageNet-1K (Russakovsky et al., 2015) dataset on the task of image retrieval –
where the goal is to retrieve images from a database (train set) belonging to the same class as the
query image (validation set). We encode both the database and query set using a ResNet50 model
(ϕ) (He et al., 2016) trained on ImageNet-1K. The performance of ANNS is often measured using
recall@k, however, the presence of labels allows us to compute 1-NN (top-1) accuracy where the
top retrieved image should be of the same class. Top-1 accuracy is more fine-grained and corre-
lates well with typical retrieval metrics like recall and mean average precision (mAP@k). Even
though we report top-1 accuracy by default during experimentation, we discuss other metrics in
Appendix E. Finally, we measure the compute overhead of ANNS using Mega FLOPS per Query
(MFLOPS/Query) (see Appendix I.4).

We use the independently trained ResNet50 models with varying representation sizes (d =
[8, 16, . . . , 2048]) provided by Kusupati et al. (2022) alongside the MRL-ResNet50 models trained
with matryoshka representation learning (MRL) for the same data dimensionalities. The RR
and MR models are trained to ensure the supervised one-vs-all classification accuracy across all
data dimensionalities is nearly the same – 1-NN accuracy of 2048-d RR and MR models are
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Figure 4: The schematic of inverted file index (IVF) outlaying the construction and inference phases.
Adaptive representations can be utilized effectively in the decoupled components of clustering and
searching for a better accuracy-compute trade-off.

71.19% and 70.97% respectively on ImageNet-1K. Independently trained models, ϕRR(d), output
d = [8, 16 . . . , 2048] dimensional RRs while a single MRL-ResNet50 model, ϕMR(d), outputs a
d = 2048-dimensional MR that contains all the 9 granularities We use the 9 exponentially separated
dimensionalities to evaluate the benefits adaptive representations bring to ANNS design. More im-
plementation details can be found in Appendix C and additional experiment-specific information is
provided at appropriate places.

E EVALUATION METRICS

In this work, we primarily use top-1 accuracy (i.e. 1-Nearest Neighbor), recall@k, corrected mean
average precision (mAP@k) Kusupati et al. (2021) and k-Recall@N, which are defined over all
queries Q over indexed database of size ND as:

top-1 =

∑
Q correct pred@1

|Q|

Recall@k =

∑
Q correct pred@k

|Q|
∗ num classes

|ND|
where correct pred@k is the number of k-NN with correctly predicted labels for a given query. As
noted in Appendix L.1, k-Recall@N is the overlap between k exact search nearest neighbors (which
are considered ground truth) and the top N retrieved documents. As Faiss Johnson et al. (2019)
supports a maximum of 2048-NN while searching the indexed database, we report 40-Recall@2048
in Figures 14 and 15. Also note that for ImageNet-1K, which constitutes a bulk of the experimen-
tation in this work, |Q| = 50000, |ND| = 1281167 and num classes= 1000. For ImageNetv2,
|Q| = 10000 and num classes= 1000, and for ImageNet-4K, |Q| = 210100, |ND| = 4202000 and
num classes= 4202.

F FURTHER ANALYSIS ON ANNS COMPONENTS

State-of-the-art ANNS pipelines (Johnson et al., 2019; Jayaram Subramanya et al., 2019) use two
other key techniques alongside IVF: (a) Product Quantization (PQ) and (b) Hierarchical Navigable
Small World graphs (HNSW). Naturally, a question arises if AdANNS can be combined with such
ANNS components. While we theoretically argue about the complementary nature of AdANNS to
PQ and HNSW (Section 4), here we provide preliminary results in that direction. We show that:
(a) PQ-based approximate distance computation is complementary to MRs and can be easily added
to AdANNS-D; (b) MRs are better than RRs when using HNSW and PQ can be leveraged on top
of them to find optimal accuracy-compute trade-off. For simplicity of exposition, and highlighting
the key aspects of AdANNS, our primary adaptation and experiments are on IVF which is another
state-of-the-art ANNS data structure. Further details are provided in Appendices G and H.
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G PRODUCT QUANTIZATION

Product quantization (PQ) (Jegou et al., 2010) works by splitting a d-dimensional real vector into
m sub-vectors and quantizing each sub-vector with an independent 2b length codebook across the
database. After PQ each d-dimensional vector can be represented by a compact m × b bit vector
– we fix b = 8 making the vectors m bytes long. The generality of PQ encompasses scalar/vector
quantization (Gray, 1984; Lloyd, 1982) as special cases. While, significant work has been done to
improve PQ further (Ge et al., 2013; Chen et al., 2020), we only experiment with standard PQ as the
improvements are complementary.

In this section, we discuss additional product quantization behavior of MR. It is evident from these
results that:

1. For a fixed m-byte compression provided by PQ with m sub-quantizers and b = 8 bit
precision, the highest accuracy does not come from the highest embedding dimensionality
d. This trend is ubiquitous with Matryoshka Representations (MRs) in both graph (HNSW)
and tree (IVF) search space partitioning structures across all embedding dims d, and for
baseline RR for m ≤ 32. It is interesting to note that d = 2048 has the worst Top-1
accuracy across all compression sizes from 8 to 128 bytes with MRs.

2. Note that we indirectly evaluate Scalar Quantization (SQ) (Gray, 1984) at all PQm where
m = d. As seen in Figure 9, SQ is never the best configuration for fixed compression.
MR-SQ is on average 1.5% more accurate than RR-SQ for both IVFSQ and HNSWSQ.

3. We also explore the potential gains offered by Optimized Product Quantization (OPQ) (Ge
et al., 2013) in Table 2. The space rotation and dimensionality permutation performed by
OPQ alongside sub-vector quantization offer slight gains in top-1 and mAP@10 accuracy
with IVF clustering at d ∈ {8, 16, 32, 64, 256}, and more substantial recall@100 gains at
all d ≥ 16 (See Appendix E for metric definitions).

Table 2: Comparison of IVFPQ-MR with OPQ-MR for fixed d = 2048 across quantized compres-
sion m ∈ {1, 2, 4, ..., 2048}.

Config IVFPQ-MR OPQ-MR

d m Top-1 mAP@10 R@100 Top-1 mAP@10 R@100

2048

1 66.69 61.76 5.00 64.81 59.66 4.97
2 67.02 61.96 5.00 66.03 60.97 5.02
4 67.19 62.28 5.01 67.13 61.96 5.06
8 67.84 62.67 5.01 67.90 62.72 5.09
16 68.49 63.19 5.02 68.89 63.49 5.12
32 69.03 63.68 5.03 69.35 64.08 5.15
64 69.38 64.06 5.03 69.59 64.36 5.16

128 69.68 64.33 5.04 69.77 64.46 5.17
256 69.80 64.59 5.05 69.90 64.53 5.17
512 70.06 64.83 5.05 69.87 64.56 5.17

1024 70.17 64.95 5.06 69.89 64.60 5.17
2048 70.10 64.98 5.06 69.87 64.62 5.17
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H HNSW

Hierarchical Navigable Small World graph (HNSW) is a state-of-the-art ANNS index with more
memory overhead compared to IVF. HNSW is often the go-to out-of-the-box choice for high-
accuracy ANNS (Beaumont, 2021). We investigate the compute-accuracy trade-off of the default
HNSW index (Johnson et al., 2019) built on varying capacity MRs and RRs. We find that HNSW
is slightly more accurate than IVF but comes with a large index memory overhead. Figure 12 in
Appendix L.1 shows that the accuracy gain is marginal after certain data dimensionality for HNSW,
but the compute and memory cost grow linearly with d – making low-dimensional representation
better for the accuracy-compute trade-off. For example, the accuracy gain from 128-d to 2048-d
MR is marginal while the overhead increases 16×. Similar to the observations in PQ and IVF, MRs
outperform RRs even for graph-based while showing that MRs are complementary to HNSW as
well.

I IVF

In this paper, we use an Inverted File Index (IVF) (Sivic & Zisserman, 2003) ANNS data structure by
default. IVF is an ANNS data structure used in web-scale search systems (Guo et al., 2020) owing to
its simplicity, minimal compute overhead and high accuracy. IVF construction involves clustering
(coarse quantization often through k-means) (Lloyd, 1982) on d-dimensional representation that
results in an inverted file list (Witten et al., 1999) of all the data points in each cluster. During the
search, d-dimensional query representation is assigned to the most relevant cluster (Ci; i ∈ [k]) by
finding the closest centroid (µi) using an appropriate distance metric (L2 or cosine). This is followed
by an exhaustive linear search across all data points in the cluster which gives the closest NN. Lastly,
IVF can scale to web-scale by utilizing a hierarchical IVF structure within each cluster (Guo et al.,
2020). Figure 4 shows the high-level overview of an IVF-based ANNS system and Table 1 describes
the retrieval formula for multiple variants of IVF.

Our proposed adaptive variant of IVF, AdANNS-IVF-C, decouples the clustering, with dc dimen-
sions, and the linear scan within each cluster, with ds dimensions – setting dc = ds results in
non-adaptive vanilla IVF. This helps in the smooth search of design space for the optimal accuracy-
compute trade-off. A naive instantiation yet strong baseline would be to use explicitly trained dc and
ds dimensional rigid representations (called MG-IVF-RR, for multi-granular IVF with rigid repre-
sentations). We also examine the setting of adaptively choosing low-dimensional MR to linear scan
the shortlisted clusters built with high-dimensional MR, i.e. AdANNS-IVF-D, as seen in Table 3.
We discuss the inference compute for these settings in Appendix I.4.

I.1 IMAGENETV2 AND IMAGENET-4K

Robustness: Figure 5 shows MRs continue to be better than RRs even for out-of-distribution
(OOD) image queries (ImageNetV2 (Recht et al., 2019)) using ANNS. It also shows that the highest
data dimensionality need not always be the most robust which is further supported by the higher
recall using lower dimensions. Further, we show that adaptive inference on fixed IVF structure holds
true even for OOD queries and enables up to 16× (Table 3) compute gains for similar accuracy. For
ID queries on ImageNet-1K (Figure 5a), IVF-MR is at least as accurate as Exact-RR for d ≤ 256
with a single search probe, demonstrating the quality of in-distribution low-d clustering with MR.

8 16 32 64 12
8

25
6

51
2

10
24

20
48

Representation Size

60

62

64

66

68

70

To
p-

1 
Ac

cu
ra

cy
(%

)

IVF-MR
IVF-RR
Exact-MR
Exact-RR

(a) ImageNet-1K

8 16 32 64 12
8

25
6

51
2

10
24

20
48

Representation Size

50

52

54

56

58

60

To
p-

1 
Ac

cu
ra

cy
(%

)

IVF-MR
IVF-RR
Exact-MR
Exact-RR

(b) ImageNetV2

8 16 32 64 12
8

25
6

51
2

10
24

20
48

Representation Size

10

15

20

25

30

To
p-

1 
Ac

cu
ra

cy
(%

)

IVF-MR
Exact-MR

(c) ImageNet-4K

Figure 5: Top-1 Accuracy variation of IVF-MR of ImageNet 1K, ImageNetV2 and ImageNet-4K.
RR baselines are omitted on ImageNet-4K due to high compute cost.

13



Published as a conference paper at ICLR 2023

Table 3: Top-1 Accuracy of AdANNS-IVF-D on out-of-distribution queries from ImageNetV2 com-
pared to both IVF and Exact Search with MR and RR embeddings. Note that for AdANNS-IVF-D,
the dimensionality used to build clusters dc = 2048.

d AdANNS-IVF-C IVF-MR Exact-MR IVF-RR Exact-RR

8 53.51 50.44 50.41 49.03 48.79
16 57.32 56.35 56.64 55.04 55.08
32 57.32 57.64 57.96 56.06 56.69
64 57.85 58.01 58.94 56.84 57.37
128 58.02 58.09 59.13 56.14 57.17
256 58.01 58.33 59.18 55.60 57.09
512 58.03 57.84 59.40 55.46 57.12

1024 57.66 57.58 59.11 54.80 57.53
2048 58.04 58.04 59.63 56.17 57.84

On OOD queries (Figure 5b), we observe that IVF-MR is on average 2% more robust than IVF-RR
across all cluster construction and linear scan dimensionalities d. It is also notable that clustering
with MRs followed by linear scan with # probes = 1 is more robust than exact search with RR
embeddings across all d ≤ 2048, indicating the adaptability of MRs to distribution shifts during
inference. As seen in Table 3, on ImageNetV2 AdANNS-IVF-D is the best configuration for d ≤ 16,
and is similarly accurate to IVF-MR at all other d. AdANNS-IVF-D with d = 128 is able to match
its own accuracy with d = 2048, a 16× compute gain during inference. This demonstrates the
potential of AdANNS to adaptively search pre-indexed clustering structures.

Larger Scale: We also examined the clustering capabilities of MRs on larger-scale ImageNet-
4K (Kusupati et al., 2022). On 4-million scale ImageNet-4K (Figure 5c), we observe similar accu-
racy trends of IVF-MR compared to Exact-MR as in ImageNet-1K (Figure 5a) and ImageNetV2
(Figure 5b). We omit baseline IVF-RR and Exact-RR experiments due to high compute cost at
larger scale.

I.2 ABLATIONS

As seen in Figure 6a, IVF-MR can match the accuracy of Exact Search on ImageNet-4K with
∼ 100× less compute. We also explored the capability of MRs at retrieving cluster centroids with
low-d compared to a ground truth of 2048-d with k-Recall@N, as seen in Figure 6b. MRs were able
to saturate to near-perfect 1-Recall@N for d ≥ 32 and N ≥ 4, indicating the potential of AdANNS
at matching exact search performance with less than 10 search probes np.
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Figure 7: Clustering distributions for IVF-MR and IVF-RR across embedding dimensionality d on
ImageNet-1K. An IVF-MR and IVF-RR clustered with d = 16 embeddings is denoted by MR-16
and RR-16 respectively.

I.3 CLUSTERING DISTRIBUTION

We also investigate the potential deviation in clustering distributions for MRs across dimensional-
ities compared to RRs, as seen in Figure 7. Unlike the RRs where the information is uniformly
diffused across dimensions (Soudry et al., 2018), MRs have hierarchical information packing. We
observe IVF-MR to have less variance than IVF-RR at d ∈ {8, 16}, and slightly higher variance
for d ≥ 32, while IVF-MR outperforms IVF-RR in top-1 across all d (Figure 5a). This indicates
that although MR learns clusters that are less uniformly distributed than RR at high d, the quality of
learnt clustering is superior to RR across all d. Note that a uniform distribution is N/k data points
per cluster, i.e. ∼ 1250 for ImageNet-1K with k = 1024. Figure 7 shows that matryoshka represen-
tations result in clusters similar (measured by total variation distance (Levin & Peres, 2017)) to that
of rigid representations and do not result in any unusual artifacts. Total Variation Distance (Levin &
Peres, 2017) is defined over two discrete probability distributions p, q over [n] as follows:

dTV (p, q) =
1

2

∑
i∈[n]

|pi − qi|

We also compute dTV,2048(MR-d) = dTV (MR-d,RR-2048), which evaluates the total varia-
tion distance of a given low-d MR from high-d RR-2048. We observe a monotonically de-
creasing dTV,2048 with increasing d, which demonstrates that MR clustering distributions get
closer to RR-2048 as we increase the embedding dimensionality d. We observe in Figure 7 that
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Figure 8: Evaluation of accuracy-compute trade-off for (a) standard PQ, (b) IVFPQ and (c) HN-
SWPQ indices built on varying dimensional MRs and RRs. We investigate 16, 32, and 64-byte
PQ budgets and find that the highest-dimensional representation need not be the most aligned for
quantization owing to hardness of clustering.

dTV (MR-d,RR-d) ∼ 7e − 4 for d ∈ {8, 256, ..., 2048} and ∼ 3e − 4 for d ∈ {16, 32, 64}.
These findings agree with the top-1 improvement of MR over RR as shown in Figure 5a, where
there are smaller improvements for d ∈ {16, 32, 64} (smaller dTV ) and larger improvements for
d ∈ {8, 256, ..., 2048} (larger dTV ). These results demonstrate a correlation between top-1 perfor-
mance of IVF-MR and the quality of clusters learnt with MR.

I.4 INFERENCE COMPUTE

We evaluate inference compute for IVF in MegaFLOPS per query (MFLOPS/query) as shown in
Figures 1, 2, and 11 as follows:

C = dsk +
npdsND

k
where dc is the cluster construction embedding dimensionality, ds is the embedding dim used for
linear scan within each probed cluster, which is controlled by # of search probes np. Finally, k
is the number of clusters |Ci| indexed over database of size ND. The default setting in this work
unless otherwise mentioned is np = 1, k = 1024, ND = 1281167 (ImageNet-1K trainset). Vanilla
IVF supports only dc = ds, while AdANNS-IVF-C provides flexibility via decoupling clustering
and search (Section 4). AdANNS-IVF-D is a special case of AdANNS-IVF-C with the flexibility
restricted to inference, i.e. dc is a fixed high-dimensional MR.

J COMPOSITE INDICES – IVFPQ & HNSWPQ

Composite indices represent the existing adaptivity in ANNS pipelines. An ANNS data structure
is often built on a high-dimensional RR, but can not afford distance computation with the same.
In these cases, we use cheaper distance computation through dimensionality reduction – typically
through PQ (Jayaram Subramanya et al., 2019). Composite indices trade off the accurate construc-
tion of the expensive structure with efficient inference.

Figures 8b and 8c show that even for composite indices (IVFPQ and HNSWPQ), lower dimensions
result in a better accuracy-compute trade-off as they can cluster and quantize better compared to
higher-dimensions. The trends of IVFPQ and HNSWPQ follow that of PQ where MRs are consis-
tently better than RRs and the best accuracy peaks at a much lower dimension than 2048-d.

We also perform an exhaustive study of compression across embedding dimensionalities d for com-
posite PQm×b indices with both IVF and HNSW, i.e. IVFPQ and HNSWPQ, as seen in Figure 9

1. In IVFPQ, MRs are on average 1.5% more accurate, and at max 3.3% more accurate than
their baseline RR counterparts for all (m, d) PQ compression tuples.

2. In HNSWPQ, MRs are on average 1% more accurate, and at max 3.2% more accurate than
their baseline RR counterparts for all (m, d) PQ compression tuples with d ≤ 1024.

A key thing to note is that the AdANNS-D proposed for adaptive inference in Section 4.2 is a gen-
eralized variant of composite indices where data structure construction and inference happen with
representations of different capacities. While AdANNS-D uses low-d MRs for distance computa-
tion, as observed here they also can result in better PQ vectors for further speed-ups. The design
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(b) HNSWPQ-RR
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(d) IVFPQ-RR

Figure 9: Top-1 Accuracy of MR compared to RR baseline models on ImageNet-1K with IVFPQ
and HNSWPQ.
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Figure 10: Top-1 accuracy vs compute cost per query of AdANNS-IVF-C compared to IVF-MR,
IVF-RR and MG-IVF-RR baselines on ImageNet-1K.

space of composite indices blows up when using adaptive representations hence using MRs for
ANNS design and deployment can result in a smooth and flexible inference time adoption with
minimal design search overhead.

K AdANNS-IVF-C

As seen in Figure 10, AdANNS-IVF-C provides pareto-optimal compute-accuracy tradeoff across
inference compute. This figure is a more exhaustive indication of AdANNS-IVF-C behavior com-
pared to baselines than Figures 1 and 2. AdANNS-IVF-C is evaluated for all possible tuples of
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dc, ds, k = |C| ∈ {8, 16, ..., 2048}. MG-IVF-RR configurations are evaluated for dc ∈ {8, ..., ds},
ds ∈ {32, ..., 2048} and k = 1024 clusters. A study over additional k values is omitted due to
high compute cost. Finally, IVF-MR and IVF-RR configurations are evaluated for dc = ds ∈
{8, 16, ..., 2048} and k ∈ {256, ..., 8192}. Note that for a fair comparison, we use np = 1 across all
configurations.

K.1 AdANNS-C VS. AdANNS-D

The two alternatives, AdANNS-C, and AdANNS-D with-in the AdANNS paradigm rely on bring-
ing adaptivity to the construction and inference of ANNS indices respectively. Figure 11 shows
that for a given compute budget, AdANNS-C is better than AdANNS-D due to the explicit control
during the building of the ANNS structure. However, these methods are applicable in specific sce-
narios of deployment. AdANNS-C is more tailored for precise deployment constraints that require
maximum possible accuracy for a given budget. Obtaining optimal AdANNS-C relies on a rela-
tively expensive design space search but delivers indices that fit the storage, memory, compute, and
accuracy constraints all at once. On the other hand AdANNS-D does not require a precisely built
ANNS index but can enable compute-aware search during inference. AdANNS-D achieves this by
using low-dimensional MRs for distance computation based on compute budget. AdANNS-D is a
great choice for setups that can afford only one single database/index but need to cater to varying de-
ployment constraints – e.g, one task requires 70% accuracy while another task has a strict compute
cut-off at 1 MFLOPS/query.

L ABLATIONS

L.1 IVF AND HNSW

A labeled dataset like ImageNet-1K lets us compute top-1 accuracies which often correlate with
overall recall metrics. However, in larger noisy datasets the quality of ANNS is evaluated using the
recall of the “true” NN across search complexities – measured using k-Recall@N which denotes the
recall of k true NN when N datapoints are retrieved. While this metric makes sense for evaluating
ANNS algorithms on a RR, it needs to be combined with top-1 accuracy for understanding the
differences across various learned representations. For a similar top-1 accuracy, a better recall-score
plot implies easier searchability for ANNS.

Figure 13 shows that for a similar top-1 accuracy, lower-dimensional representations have better
1-Recall@1 across search complexities for IVF and HNSW on ImageNet-1K. We observe that the
top-1 improvements shown by MR over RR also extend to recall@100, as shown in Figure 12. In
this section we also examine the variation of k-Recall@N with search probes in more detail. For
IVF, search probes represent the number of clusters shortlisted for linear scan during inference. For
HNSW, search quality is controlled by the efSearch parameter (Malkov & Yashunin, 2020), which
represents the closest neighbors to query q at level lc of the graph and is analogous to number of
search probes in IVF. As seen in Figure 14, general trends show a) an intuitive increase in recall with
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Figure 11: Compute-accuracy trade-off for the two variants of AdANNS, AdANNS-C &
AdANNS-D on IVF. AdANNS-C is better than AdANNS-D due to the control during construc-
tion.
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(a) IVF top-1 accuracy
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(b) HNSW top-1 accuracy
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(c) IVF Recall@100
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(d) HNSW Recall@100

Figure 12: Top-1 and Recall@100 of MR compared to RR baselines on ImageNet-1K with HNSW
and IVF.
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Figure 13: Recall score plots with 1-Recall@1 for ImageNet-1K using IVF and HNSW on MRs and
RRs of 64, 256 & 2048-d.

increasing search probes np) for fixed search probes, a decrease in recall with increasing search
dimensionality d. Lastly, we also experimented on ImageNet-4K (Kusupati et al., 2022), a 4×
larger benchmark than ImageNet, and found similar results even at a much larger scale, as seen in
Figure 15. Across the board, MRs have higher recall scores and top-1 accuracy pointing to the better
suitability of matryoshka representations for ANNS.
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Figure 14: k-Recall@N of d-dimensional MR for IVF and HNSW with increasing search probes np

on ImageNet-1K.
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Figure 15: k-Recall@N for IVF-MR-d on ImageNet-4K for d ∈ {8, 64, 256, 2048}. Other embed-
ding dimensionalities, HNSW-MR and RR baselines are omitted due to high compute cost. We
observe that trends from ImageNet-1K with increasing d and np extend to ImageNet-4K, which is
4× larger.
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Figure 16: Relative contrast of varying capacity MRs and RRs on ImageNet-1K corroborating the
findings of He et al. (2012).

L.2 RELATIVE CONTRAST

Difficulty of NN Search Relative contrast (Cr) (He et al., 2012) intuitively measures the diffi-
culty of nearest neighbour search on a given database. Cr is lower bounded by 1 and Cr is inversely
correlated to the difficulty of the nearest neighbour search. Figure 16 shows that MRs have better
Cr than RRs across dimensionalities further supporting that matryoshka representations are more
aligned (easier) for NN search than existing rigid representations for the same accuracy. This trans-
lates to higher accuracy for the same NN search cost as observed in our experiments (Appendix I).
Lastly, Figure 16 also shows that Cr increases as the dimensionality decreases – owing to distance
concentration in high dimensional spaces (Blum et al., 2020; He et al., 2012).

We utilize Relative Contrast (He et al., 2012) to capture the difficulty of nearest neighbors search
with IVF-MR compared to IVF-RR. For a given database X = {xi ∈ Rd, i = 1, ..., ND}, a query
q ∈ Rd, and a distance metric D(., .) we compute relative contrast Cr as a measure of the difficulty
in finding the 1-nearest neighbor (1-NN) for a query q in database X as follows:

1. Compute Dq
min = min

i=1...n
D(q, xi), i.e. the distance of query q to its nearest neighbor

xq
nn ∈ X

2. Compute Dq
mean = Ex[D(q, x)] as the average distance of query q from all database points

x ∈ X

3. Relative Contrast of a given query Cq
r =

Dq
mean

Dq
min

, which is a measure of how separable the

query’s nearest neighbor xq
nn is from an average point in the database x

4. Compute an expectation over all queries for Relative Contrast over the entire database as

Cr =
Eq[D

q
mean]

Eq[D
q
min]

It is evident that Cr captures the difficulty of Nearest Neighbor Search in database X , as a Cr ∼ 1
indicates that for an average query, its nearest neighbor is almost equidistant from a random point in
the database. As demonstrated in Figure 16, MRs have higher Rc than RR Embeddings for an Exact
Search on ImageNet-1K for all d ≥ 16. This result implies that a portion of MR’s improvement
over RR for 1-NN retrieval across all embedding dimensionalities d (Kusupati et al., 2022) is due to
a higher average separability of the MR 1-NN from a random database point.

L.3 GENERALITY ACROSS ENCODERS

We also find that our observations on better alignment of MRs for NN search hold across neural
network architectures, ResNet18/34/101 He et al. (2016). IVF-MR consistently has higher accuracy
compared to IVF-RR across dimensionalities despite having similar accuracies with exhaustive NN
search. Adaptive representations like MRs also allow for easy searching of optimal dimensionality
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Figure 17: Top-1 Accuracy variation of IVF-MR on ImageNet-1K with different embedding repre-
sentation function ϕMR(d) (see Section 3), where ϕ ∈ ResNet18/34/101. We observe similar trends
between IVF-MR and Exact-MR on ResNet18/34/101 when compared to ResNet50 (Figure 12a)
which is the default in all experiments in this work.

for accuracy-compute trade-offs across all neural architectures. We perform an ablation over the
representation function ϕ : X → Rd learnt via a backbone neural network (primarily ResNet50 in
this work), as detailed in Section 3.

We train MRL models (Kusupati et al., 2022) ϕMR(d) on ResNet18/34/101 (He et al., 2016) that are
as accurate as their independently trained RR baseline models ϕRR(d), where d is the default max
representation size of each architecture. We then compare clustering the MRs via IVF-MR with
k = 2048, np = 1 on ImageNet-1K to Exact-MR, which is shown in Figure 17. IVF-MR shows
similar trends across ResNet families compared to Exact-MR, i.e. a maximum top-1 accuracy drop
of ∼ 1.6% for a single search probe. This suggests the clustering capabilities of MR extend beyond
an inductive bias of ϕMR(d) ∈ ResNet50, though we leave a detailed exploration for future work.
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