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ABSTRACT

Adapters are parameter-efficient modules added to pretrained Transformer mod-
els that facilitate cross-lingual transfer. Language adapters and task adapters can
be separately trained and zero-shot transfer is enabled by pairing the language
adapter in the target language with a task adapter trained on a high-resource lan-
guage. However, there are many languages and dialects for which training lan-
guage adapters would be difficult. In this work, we present a simple and efficient
ensembling technique to transfer task knowledge to unseen target languages for
which no language adapters exist. We compute a uniformly-weighted ensemble
model over the top language adapters based on how well they perform on the test
set of a high-resource language. We outperform the state-of-the-art model for this
specific setting on named entity recognition (NER) and part-of-speech tagging
(POS), across nine typologically diverse languages with relative performance im-
provements of up to 29% and 9% on NER and POS, respectively, on select target
languages.

1 INTRODUCTION

Multilingual pretrained models have been established as a powerful first step towards cross-lingual
NLP Devlin et al. (2019); Conneau et al. (2020). A major appeal of these models is that they can
bootstrap NLP tasks in very low-resource languages via zero-shot transfer Wu & Dredze (2019);
Pires et al. (2019); Hsu et al. (2019). A dominant paradigm in zero-shot cross-lingual transfer is to
finetune a multilingual model using task-specific data in a high-resource language before evaluating
on the unseen target languages. Adapter modules Rebuffi et al. (2017); Houlsby et al. (2019); Pfeiffer
et al. (2020a;b; 2021) have recently emerged as another effective technique for zero-shot transfer.
Adapters are new layers interspersed within the layers of the pretrained models. Only these new
layers are fine-tuned while the weights of the original pretrained model are kept frozen, thus enabling
efficient parameter sharing between tasks and languages with the help of task-specific and language-
specific adapters.

Pfeiffer et al. (2020a) propose zero-shot transfer using adapters by stacking language-specific
adapters (trained on unlabeled text) with task-specific adapters (trained on labeled data). This tech-
nique requires a language adapter for every test language which may not exist for a large fraction of
the world’s languages. Our main motivation is to improve zero-shot cross-lingual performance for
such languages that do not have language adapters.

In recent work, Wang et al. (2021b) addressed this specific setting of zero-shot transfer to languages
without any language adapters using a learnable weighted ensemble of related language adapters
called Entropy Minimized Ensemble of Adapters (EMEA). Ensemble weights were learned for each
test instance to minimize the entropy of the output distribution from the ensembled model. They
found even simple ensembling with uniform weights to be effective on cross-lingual sequence tag-
ging tasks and EMEA offered further improvements over vanilla ensembling. However, EMEA is
costly at inference time due to the ensemble weight computations for each test instance.
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In this work, we present a surprisingly simple and efficient ensembling strategy with no test-time
computations that performs at par or outperforms EMEA on a diverse set of target languages. For a
given task, the key idea is to evaluate all existing language adapters on a test set of a high-resource
or related language, sort them in descending order of performance and pick the top few language
adapters for our ensemble. This simple strategy performs surprisingly well. We also offer many
supporting empirical analyses to further demonstrate the value of our ensembling techniques.

2 OUR ADAPTER ENSEMBLING TECHNIQUES

Our ensembling techniques are built on top of the MAD-X framework Pfeiffer et al. (2020a;b) that
we briefly describe below.

Adapters for Zero-Shot Transfer The MAD-X framework Pfeiffer et al. (2020b) introduced lan-
guage and task adapters as lightweight modules that are inserted within a pretrained multilingual
model M. MAD-X supports multiple tasks in multiple languages by passing the outputs of each
layer of M, denoted by h, through a language adapter L and a task adapter T to give T (L(h)).
The resulting model is written as T ◦ L ◦ M. For cross-lingual transfer from a source language
Lsrc to a target language Ltgt, MAD-X adopts the following two-step approach. First, the models
Lsrc ◦M and Ltgt ◦M are trained on unlabeled text in Lsrc and Ltgt, respectively, using the masked
language modeling objective. Next, T is trained on labeled task data in Lsrc using the cascaded
model T ◦ Lsrc ◦M. Finally, T ◦ Ltgt ◦M can be used for zero-shot transfer to Ltgt.

Our goal is to adapt M to a new target language Lnew that does not have a language adapter. Our
ensembling techniques are all based on a simple averaging of outputs from a set of language adapters,

S = {L1, . . . ,Ln}. That is, h of each layer in M is transformed as
1

n

n∑
i=1

Li(h). Our ensemble

is fixed across all target languages and does not incur any test-time computations. Next, we discuss
different strategies to choose S.

ENSEMBLE-ALL. Wang et al. (2021b) advocate the use of languages that are perceived to be
related to Lnew for their ensembles. We argue this may not be an optimal strategy since it precludes
the use of other (unrelated) language adapters that are well-trained and might potentially help Lnew.
Also, the presence of a task adapter trained on Lsrc in the model makes it unclear as to whether the
chosen adapter languages should be similar to Lsrc or Lnew. We first opt for the easiest choice of using
an ensemble of all language adapters available on AdapterHub Pfeiffer et al. (2020a). However, this
is expensive in terms of memory and averages over a large number of adapters. The next two
strategies aim at meaningfully reducing the size of S.

EN-10. It is conceivable that there are certain high-performing language adapters that can be ef-
fective across all targets. In order to identify these “good” language adapters, for every available
language adapter Li, we evaluate T ◦ Li ◦ M on an English test set. We sort the adapters Li in
decreasing order of their performance and select the top K for our ensemble set S. (We find K = 10
to be a good choice. More details are in Section 4.)

REL-10. Rather than evaluating on an English test set, evaluating on a language Lrel that is similar
to Lnew may be a better proxy for performance on Lnew. Thus, we also select the top K language
adapters for S based on their performance on a test set in Lrel. Lrel is identified as was done in Wang
et al. (2021b), and has the same script as the target language (except for Bengali and Tamil).

3 EXPERIMENTAL SETUP

Tasks and Datasets. We perform experiments on two tasks: Named entity recognition (NER) and
Part-of-Speech tagging (POS). We use the WikiAnn dataset Pan et al. (2017) for NER and Universal
Treebank 2.0 Nivre et al. (2018) for POS tagging. We report F1 scores averaged over 3 random seeds
for all our experiments.

Model. We use the mBERT (Devlin et al., 2019) base model for all our experiments. We use pre-
trained language adapters from AdapterHub (Pfeiffer et al., 2020a). To train the task adapters and
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Table 1: Averaged F1 scores for POS tagging and NER. Best scores for each target language are
highlighted in bold.

Task Method mr bn ta fo no da be uk bg avg

NER

En 44.6 51.7 22.9 61.9 72.7 79.5 60.3 57.5 68.2 57.7
RELATED 45.6 41.5 18.6 59.8 69.8 72.9 61.1 52.9 66.7 54.3

ENSEMBLE-REL 51.7 51.5 28.7 63.3 73.9 79.6 65.5 58.2 71.1 60.4
EMEA-1 53.0 56.2 30.1 64.9 74.0 80.1 66.6 59.6 72.1 61.8

EMEA-10 54.2 57.4 31.2 65.1 74.1 80.5 67.1 60.6 73.1 62.6

ENSEMBLE-ALL 49.9 59.9 37.2 55.9 72.6 78.2 67.0 57.1 72.3 61.1
EN-10 49.8 62.4 38.9 62.5 73.6 79.2 67.0 57.3 73.3 62.7

REL-10 51.8 63.0 40.3 62.8 73.8 79.5 67.7 58.9 73.6 63.5

Task Method mr bho ta fo no da be uk bg avg

POS

En 62.7 39.6 61.6 73.7 84.7 87.8 80.1 81.4 84.7 72.9
RELATED 53.9 46.6 56.4 73.5 77.4 82.9 76.1 76.5 80.5 69.3

ENSEMBLE-REL 64.0 45.6 61.8 75.2 84.0 88.1 81.2 81.4 84.7 74.0
EMEA-1 64.4 45.7 62.4 75.3 83.9 88.1 81.1 81.3 84.7 74.1

EMEA-10 65.2 45.4 63.1 75.2 84.1 88.2 81.4 81.4 84.9 74.3

ENSEMBLE-ALL 64.8 43.5 67.7 72.6 84.2 88.1 81.9 81.8 84.9 74.4
EN-10 68.6 45.0 68.5 74.3 84.8 88.1 82.1 82.1 85.2 75.4

REL-10 67.9 46.3 68.2 75.3 84.9 88.3 82.4 82.2 85.4 75.7

the EMEA ensembles, we use the hyperparameters specified in Wang et al. (2021b). Appendix C
lists more implementation details.

Languages. We use the same three groups of languages listed in Wang et al. (2021b). Group 1 has
Marathi (mr), Tamil (ta), Bengali (bn) and Bhojpuri (bho); Group 2 has Faroese (fo), Norwegian
(no), Danish(da); and, Group 3 has Belarussian (be), Ukranian (uk) and Bulgarian (bg). Related
languages for each group are Hindi (hi), Icelandic (is) and Russian (ru), and we also use Arabic( ar)
and German (de) as additional adapters for the first and second groups, respectively. For our ensem-
bles, we consider 45 pretrained language adapters available on AdapterHub (excluding Bengali and
Bhojpuri that appear as target languages).

Baselines. We reproduce the following baselines from Wang et al. (2021b)1 :1. EN: English lan-
guage adapter. 2. RELATED: Single related language adapter. 3. ENSEMBLE-REL: Ensemble of an
English adapter, a related language adapter and additional adapters (as listed in Wang et al. (2021b),
if available). 4. EMEA-1/EMEA-10: One or ten steps of test-time entropy minimization applied
to the ensemble in ENSEMBLE-REL.

4 RESULTS

Our main results are listed in Table 1. EN-10 is consistently better than EMEA-10 on POS tagging
for most of the target languages, with the highest improvement obtained for ta. REL-10 further im-
proves over EN-10 with small but consistent improvements on POS tagging. (We note an advantage
of EN-10 in that it is entirely agnostic of the target language, unlike REL-10 that requires a related
language.) For the NER task, the Indian language group of mr, bn and ta is most benefited overall by
REL-10 compared to EMEA-10 and F1 scores on most of the other target languages using REL-10
are comparable to that obtained using EMEA-10.

Varying the ensemble size. Figure 1 shows the gain in averaged F1 scores for the three language
groups over ENSEMBLE-ALL, for three different values of K. Considering the overall average F1

1We observe very high variance in F1s across random seeds for certain languages. This leads to the differ-
ence with reported numbers in Wang et al. (2021b), although the overall trends remain the same. E.g., our ta
scores are much worse for NER and far better for POS compared to Wang et al. (2021b).
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Table 2: F1 scores for POS tagging using a Hindi task adapter and different ensembling techniques.

METHOD MR BHO TA AVG

EN TASK + HI TOP 10 68.1 46.6 68.3 61.0

HI TASK + EN,HI,AR 63.7 53.8 67.9 61.8
HI TASK + EN TOP 10 66.9 52.7 70.4 63.3
HI TASK + HI TOP 10 68.5 52.9 71.1 64.2

Table 3: F1 scores for POS and NER tasks using different ensembling techniques.

Task Method mr bn ta fo no da be uk bg avg

NER

ENSEMBLE-ALL 49.9 59.9 37.2 55.9 72.6 78.2 67.0 57.1 72.3 61.1
ENSEMBLE-RAND-10 10 47.7 56.9 35.9 57.3 72.1 77.7 66.2 57.3 71.5 59.9

ENSEMBLE-LV-10 50.2 57.3 38.0 58.6 74.0 79.0 67.4 57.8 72.6 61.7
EN-10 49.8 62.4 38.9 62.5 73.6 79.2 67.0 57.3 73.3 62.7

REL-10 51.8 63.0 40.3 62.8 73.8 79.5 67.7 58.9 73.6 63.5

Task Method mr bho ta fo no da be uk bg avg

POS

ENSEMBLE-ALL 64.8 43.5 67.7 72.6 84.2 88.1 81.9 81.8 84.9 74.4
ENSEMBLE-RAND-10 10 64.5 43.5 66.5 72.9 83.9 88.2 81.8 81.6 85.0 74.2

ENSEMBLE-LV-10 67.4 45.2 67.9 73.6 84.1 88.1 82.1 82.0 85.0 75.0
EN-10 68.6 45.0 68.5 74.3 84.8 88.1 82.1 82.1 85.2 75.4

REL-10 67.9 46.3 68.2 75.3 84.9 88.3 82.4 82.2 85.4 75.6

scores, K = 10 is the best setting for NER and K = 5 and K = 10 are comparable for POS. Given
these trends, we set K = 10 for all subsequent experiments.

Changing the task adapter. We verify whether our ensembling technique helps if we had access
to a task adapter trained on a related language (rather than English). Table 2 shows F1 scores for
POS of group 1 languages using a Hindi task adapter. HI TOP 10 clearly outperforms the other two
ensembling techniques based on average F1 scores.

Evaluating different ensembling techniques. In order to disentangle the importance of ensem-
bling from the importance of choosing source language adapters, we examine how performance
varies using different ensembling techniques in Table 3. ENSEMBLE-RAND-10 uses 10 randomly
chosen language adapters and ENSEMBLE-LV-10 picks the top 10 language adapters based on sim-
ilarity between geographical vectors corresponding to the target and source languages Littell et al.

(a) Named Entity Recognition (b) Part of Speech Tagging

Figure 1: Improvement over ENSEMBLE-ALL using different ensemble sizes K with REL-K.
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(2017). We observe that our proposed ensembling techniques outperform the others on (almost) all
target languages for both POS and NER.

5 RELATED WORK

Pfeiffer et al. (2020a;b) introduces the MAD-X framework for NLP tasks and creates a repository
of pretrained language and task adapters that enable cross-lingual transfer. In this work, we focus
on zero-shot transfer to target languages for which even language adapters do not exist. Wang et al.
(2021b) focuses on the very same setting and serves as our main comparison. They draw inspiration
from test-time adaptation techniques Wang et al. (2021a) and ensemble over language adapters at
test time using learned ensemble weights for each test instance. These test time computations signif-
icantly add to the inference cost. In contrast, our simple ensembling techniques do not require costly
test-time computations and yield superior performance on both POS and NER tasks. Our work adds
to the existing literature on factors that impact or limit zero-shot transfer Lin et al. (2019); Lauscher
et al. (2020); Turc et al. (2021).

6 DISCUSSION AND CONCLUSION
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Figure 2: Visualization of the top ten language adaptors for Lrel ∈ {en,hi,is,ru}. Note the significant
overlap in language adapters across the four choices of Lrel.

We identify a core set of common language adapters appearing in the top-10 lists of en, hi, is and ru.
Figure 2 visually displays the languages that appear in all four lists; nine of the seventeen languages
appear in three or more lists. We conjecture that, along with the related language, it is important
to ensemble over this core set of language adapters. These adapters perform well across target
languages, regardless of how they relate to the target, owing to various reasons such as size and
diversity of data used to train the language adapters Lin et al. (2019). (See Appendix A.)

The main limitation of EMEA is its slow inference speed. REL-10 is significantly faster then
EMEA: With a batch size of 1, REL-10 processes 26.3 examples/second, as opposed to just 6.67
and 0.86 examples/second by EMEA-1 and EMEA-10, respectively. Further, Wang et al. (2021b)
observed that the performance of EMEA-10 decays with increasing batch size, while REL-10 has
no such limitation. With a batch size of 32, REL-10 processes as many as 110 examples per second.
While REL-10 does require task data in the related language, EN-10 has no additional requirements
as compared to Wang et al. (2021b), as English task data is anyway needed to train the task adapter.
(Appendix B shows how EMEA-1 and EMEA-10 could be used along with REL-10).
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Future Work. While we present a simple ensembling technique, we do not yet have a clear under-
standing of why the “core set” of language adapters performs well on most target languages. We
leave this important question for future work. Our results also encourage further investigation into
how source languages should be chosen for cross-lingual transfer in general.
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Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 7654–7673, Online, Novem-
ber 2020b. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.617.
URL https://aclanthology.org/2020.emnlp-main.617.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
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Table 4: Comparison of ENSEMBLE-CORE with REL-10

TASK METHOD MR BN TA FO NO DA BE UK BG AVG

NER REL-10 51.8 63.0 40.3 62.8 73.8 79.5 67.7 58.9 73.6 63.5
ENSEMBLE-CORE 51.9 63.6 39.6 61.7 74.0 79.4 67.4 58.2 73.4 63.2

TASK METHOD MR BHO TA FO NO DA BE UK BG AVG

POS REL-10 67.9 46.3 68.2 75.3 84.9 88.3 82.4 82.2 85.4 75.6
ENSEMBLE-CORE 68.5 46.9 68.5 75.2 84.9 88.2 82.3 82.1 85.3 75.8

Table 5: Performance of EMEA-1 and EMEA-10 when used in conjunction with REL-10.

TASK METHOD MR BN TA FO NO DA BE UK BG AVG

NER

EMEA-1 53.0 56.2 30.1 64.9 74.0 80.1 66.6 59.6 72.1 61.8
EMEA-10 54.2 57.4 31.2 65.1 74.1 80.5 67.1 60.6 73.1 62.6

REL-10 51.8 63.0 40.3 62.8 73.8 79.5 67.7 58.9 73.6 63.5
REL-10 + EMEA-1 51.9 65.0 40.8 63.6 74.0 79.9 68.3 60.1 73.9 64.2

REL-10 + EMEA-10 52.6 66.1 41.5 63.9 74.0 80.3 68.9 61.9 74.6 64.9

TASK METHOD MR BHO TA FO NO DA BE UK BG AVG

POS

EMEA-1 64.4 45.7 62.4 75.3 83.9 88.1 81.1 81.3 84.7 74.1
EMEA-10 65.2 45.4 63.1 75.2 84.1 88.2 81.4 81.4 84.9 74.3

REL-10 67.9 46.3 68.2 75.3 84.9 88.3 82.4 82.2 85.4 75.6
REL-10 + EMEA-1 68.0 46.5 68.0 75.2 84.8 88.4 82.4 82.2 85.4 75.7

REL-10 + EMEA-10 69.2 46.1 68.6 75.4 84.7 88.3 82.5 82.2 85.4 75.8

A ENSEMBLING OVER A CORE SET

To investigate the idea of a core set of language adapters, we introduce a new method, ENSEMBLE-
CORE. We select adapters that perform well consistently across all 4 source languages: en,hi,is,ru.
We first normalize the F1 scores in each ranked list to lie between 0 and 1 such that the best adapter
gets a score of 1 and the worst gets a score of 0. We then add the normalized scores from each source
language for a given adapter, and rank the adapters in decreasing order of cumulative score. In our
experiments, we use an ensemble of the top 9 adapters from this list (fixed across target groups), and
include the related language as the tenth adapter for each group. From Table 4, the F1 scores using
the above-mentioned core set of language adapters are very comparable to those obtained using
REL-10.

B EMEA WITH THE ENSEMBLES IDENTIFIED BY REL-10

Table 5 shows the results with learning ensemble weights using EMEA-1 and EMEA-10 on the
ensemble of adapters chosen by REL-10. We choose K=10 for both POS and NER based on the
results shown in Fig. 1. We find that the F1 scores using EMEA with REL-10 are marginally better
than REL-10 alone.

C IMPLEMENTATION DETAILS

All the experiments were run on an NVIDIA 11Gb GeForce GTX 1080 Ti. The NER task adapter
was trained for 100 epochs and the POS adapter was trained for 50 epochs. In both cases, we use a
learning rate of 1e-4 and an effective batch size of 32. We choose the best model checkpoint based
on performance on a dev set. For EMEA, we use a learning rate of γ = 10. These are the same
hyperparameters specified by Wang et al. (2021b). We use the code shared by Wang et al. (2021b)2

to reproduce all the baseline numbers.

2https://github.com/cindyxinyiwang/emea
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