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ABSTRACT

Tabular data is one of the most commonly used types of data in machine learning.
Despite recent advances in neural nets for tabular data, there is still an active discus-
sion on whether or not neural nets generally outperform gradient-boosted decision
trees (GBDTs) on tabular data. This is an important question, because neural nets
are often not practical in low-resource settings. In this work, we take a completely
different approach by focusing on what properties of a dataset make neural nets or
simpler approaches better-suited to perform well. To accomplish this, we conduct
the largest tabular data analysis to date, by comparing 22 approaches across 171
datasets, while testing 965 metafeatures. We find that, for a surprisingly high
number of datasets, either the performance difference between GBDTs and neural
nets is negligible, or light hyperparameter tuning on a GBDT is more important
than selecting the best neural net. Furthermore, we identify metafeatures of datasets
that are predictive of certain algorithms, and algorithm families, performing well.
Based on these insights, we present a guide for practitioners to decide whether or
not they need to run a neural net to reach top performance on their dataset.

1 INTRODUCTION

Tabular datasets—data organized into rows and columns consisting of continuous, categorical, and
ordinal features—are the oldest and among the most ubiquitous dataset types in machine learning
in practice (Shwartz-Ziv & Armon, 2022; Borisov et al., 2021), due to their numerous applications
across medicine (Johnson et al., 2016; Ulmer et al., 2020), finance (Arun et al., 2016; Clements et al.,
2020), online advertising (Richardson et al., 2007; McMahan et al., 2013; Guo et al., 2017), and
many other areas (Chandola et al., 2009; Buczak & Guven, 2015; Urban & Gates, 2021).

Despite several advances in designing neural nets for tabular data (Arik & Pfister, 2021; Popov et al.,
2020), there is still an active debate over whether or not deep learning methods generally outperform
gradient-boosted decision trees (GBDTs) on tabular data, with multiple works arguing either for
(Kadra et al., 2021; Arik & Pfister, 2021; Popov et al., 2020; Rubachev et al., 2022) or against
(Shwartz-Ziv & Armon, 2022; Borisov et al., 2021; Gorishniy et al., 2021) neural networks. This is
an important question, because neural nets are often not practical in low-resource settings. Many prior
studies on tabular data use fewer than 50 datasets or do not properly tune baselines (Tunguz, 2022;
Lipton & Steinhardt, 2019), putting the generalizability of these findings into question. Furthermore,
the bottom line of many prior works is to determine which method performs the best (in terms of the
average rank across datasets), without searching for more fine-grained insights.

In this work, we take a completely different approach by focusing on what properties of a dataset
indicate that neural nets or GBDTs better-suited to perform well. We take a data-driven approach to
answer this question, conducting the largest tabular data analysis to date, by comparing 22 algorithms
with up to 30 hyperparameter settings, across 171 datasets, while testing over 965 metafeatures. We
use 10 train/validation folds for each dataset, in order to further reduce the uncertainty of our results.

Our first insight is that there is no clear winner: for about 25% of the datasets, a neural network
model performs better than any non-neural model, and for 27%, a GBDT model performs better than
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Figure 1: Decision tree for picking the best algorithm, based on our experiments across 171 datasets.
The decision tree chooses among the five best-performing algorithms from our experiments: ResNet,
SAINT, TabPFN, CatBoost, and XGBoost. When faced with a new dataset, we calculate the numerical
properties of the dataset at each node. IQR denotes interquartile range, and CanCor (Lindner &
Studer, 1999) denotes canonical correlation.

any non-GBDT model. We also show that for a surprisingly high fraction of datasets, either a simple
baseline method performs on par with all other methods, or light hyperparameter tuning on a GBDT
increases performance more than choosing the best technique. These results show that for many
tabular datasets, training the latest neural network is not necessary. Next, we run analyses to discover
what properties of datasets explain which methods, or families of methods, do or do not succeed. For
example, we find that the most predictive property to determine whether a GBDT outperforms neural
nets is having a low homogeneity of covariance among the features, and the most predictive property
to determine whether a baseline performs well is having homogeneity in the skewness of features.
Based on these analyses, we present a guide for practitioners to follow when faced with a new dataset,
and we also identify failure modes and promising directions for future work. Our codebase and all
raw results are available at https://anonymous.4open.science/r/tabzilla.

Related Work. GBDTs are a powerful technique to model tabular data, which work by building
an ensemble of decision trees, incrementally updated using gradient descent. Due to their strong
performance, many high-performing instantiations have been proposed, such as XGBoost (Chen &
Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018).

There are three types of tabular data (Borisov et al., 2021). Data transformation methods (Yoon et al.,
2020; Hancock & Khoshgoftaar, 2020) seek to encode the data into a format that is better-suited for
neural nets. Architecture-based methods design specialized architectures for tabular data (Popov
et al., 2020; Guo et al., 2017; Chen et al., 2022), a large sub-class of which are transformer-based
architectures (Arik & Pfister, 2021; Gorishniy et al., 2021; Huang et al., 2020; Somepalli et al., 2021).
Regularization-based methods seek to use tailored regularization methods to reduce the extreme
flexibility of deep learning (Shavitt & Segal, 2018; Kadra et al., 2021). Several recent works have
compared GBDTs to neural nets on tabular data, finding that neural nets (Kadra et al., 2021; Gorishniy
et al., 2021) or GBDTs (Shwartz-Ziv & Armon, 2022; Borisov et al., 2021; Grinsztajn et al., 2022)
perform best. However, none considered more than 40 datasets, compared to our 171 datasets.

2 ANALYSIS OF ALGORITHMS FOR TABULAR DATA

We present results for 22 algorithms, including popular recent techniques and common baselines.
The methods include three GBDTs: CatBoost (Prokhorenkova et al., 2018), LightGBM (Ke et al.,
2017), and XGBoost (Chen & Guestrin, 2016); 14 neural networks: DANet (Chen et al., 2022),
DeepFM (Guo et al., 2017), FTTransformer (Gorishniy et al., 2021), two MLPs (Gorishniy et al.,
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2021), NAM (Agarwal et al., 2021), NODE (Popov et al., 2020), ResNet (Gorishniy et al., 2021),
SAINT (Somepalli et al., 2021), STG (Yamada et al., 2020), TabNet (Arik & Pfister, 2021), TabPFN
(Hollmann et al., 2022), TabTransformer (Huang et al., 2020), and VIME (Yoon et al., 2020); and
five baselines: Decision Tree (Quinlan, 1986), KNN (Cover & Hart, 1967), Logistic Regression (Cox,
1958), Random Forest (Liaw et al., 2002), and SVM (Cortes & Vapnik, 1995). These algorithms
were chosen because of their popularity and high performance.

Table 1: Ranking of 21 algorithms over all 171
datasets, according to test accuracy. Rank columns
show min, max, and mean ranks over all datasets, and
mean acc. indicates the mean normalized accuracy.

Algorithm Rank Mean
min max mean Acc.

CatBoost 1 18 5.21 0.87
XGBoost 1 19 5.61 0.87
ResNet 1 20 6.85 0.78
LightGBM 1 20 6.96 0.82
SAINT 1 19 7.15 0.78
NODE 1 20 7.48 0.75
RandomForest 1 19 8.09 0.77
FTTransformer 1 17 8.10 0.75
SVM 1 19 8.31 0.74
DANet 1 20 8.65 0.76
MLP-rtdl 1 19 9.57 0.67
DeepFM 1 21 10.69 0.63
TabNet 1 21 11.04 0.63
MLP 1 20 11.37 0.61
DecisionTree 1 21 11.41 0.60
TabTransformer 1 21 11.42 0.57
STG 1 21 11.47 0.60
LinearModel 1 20 12.19 0.51
KNN 1 21 12.80 0.53
VIME 1 21 14.45 0.41
NAM 1 21 15.68 0.34

We run the algorithms on 171 classification
datasets from OpenML (Vanschoren et al.,
2014). Our aim is to include most classifi-
cation datasets from popular recent papers
that study tabular data (Kadra et al., 2021;
Borisov et al., 2021; Shwartz-Ziv & Armon,
2022; Gorishniy et al., 2021), including all tab-
ular datasets from the OpenML-CC18 suite
Bischl et al. (2017) and the AutoML bench-
mark Gijsbers et al. (2019). To the best of our
knowledge our 171 datasets and 22 algorithms
are the largest number of either datasets or al-
gorithms considered by recent tabular dataset
literature, and the largest number available to
run with popular algorithms in a single open-
source repository.

For each dataset, we use the ten train/test
folds provided by OpenML (Vanschoren et al.,
2014). Appendix Table 2 shows summary
statistics for all 1710 training splits used in
our experiments. For each algorithm, and for
each dataset-split, we ran the algorithm for up
to 10 hours. During this time we trained and
evaluated the algorithm with at most 30 hyper-
parameter sets (one default set and 29 random
sets). In line with prior work, our main metric
of interest is accuracy. For nearly all of our
experiments, for each algorithm and dataset
fold pair, we report the test performance of the
hyperparameter setting that had the maximum
performance on the validation set.

To compute metafeatures, we extracted general, statistical, information theoretic, landmarking, and
model-based metafeatures using the PyMFE Alcobaça et al. (2020). See Appendix A for more details
of our experimental design.

2.1 RELATIVE ALGORITHM PERFORMANCE

In this section, we investigate the research question, “How do individual techniques, and families of
techniques, perform across a large set of datasets?” Specifically, we will look at which algorithms
perform well on average across all datasets, which families of algorithms perform well (especially,
GBDTs vs. neural nets), and whether the differences between algorithm families is significant.

We start by comparing the average rank of 21 algorithms across 171 datasets (we exclude TabPFN,
since it cannot run on large datasets). Table 1 shows the min (best), max (worst) and average rank
of each algorithm, according to accuracy, across 171 datasets; ties are assigned the min (best) rank.
We see that, surprisingly, every algorithm ranks first on at least one dataset, and nearly last on at
least one other dataset. The fact that the best out of 21 algorithms, CatBoost, only achieved an
average rank of 5.21, shows that there is not a single approach that dominates across most datsets. In
Appendix Table 3, we compute the same table for the 63 smallest datasets, so that we can include
TabPFN (Hollmann et al., 2022) in our rankings (which can only run on at most 2000 datapoints).
We find that TabPFN achieves the best average performance of all algorithms.
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Figure 2: Venn Diagram of the number of “wins” for
each algorithm class, over all 1705 dataset splits. An
algorithm wins if its normalized accuracy is at least
0.99 (out of 1) on the test set.

GBDTs vs. neural nets. Although Ta-
ble 1 tells us which individual methods
perform best on average, now we ask the
age-old question, “are GBDTs better than
neural networks for tabular data?” We
split the 22 algorithms into three families:
GBDTs (CatBoost, XGBoost, LightGBM),
neural nets (the 14 listed above), and
baselines (DecisionTree, KNN, Linear-
Model, RandomForest, SVM). We analyze
each dataset-split separately.

To compare algorithm performance across
dataset-splits, we use min-max scaling to
normalize each algorithm’s tuned accuracy
to be on [0, 1], and we say that an algo-
rithm “wins” for a dataset-split if it achieves
a normalized accuracy of at least 0.99. For
each of the 1705 dataset-splits, we determine
which algorithm families (tree, neural net,
baseline) have a winning algorithm. Figure
2 shows the number of dataset splits where
each subset of algorithm classes win, accord-
ing to accuracy. Surprisingly, neural net-
works are the sole winner for only 25.3% of
datasets, showing that for most datasets, a GBDT or baseline suffices!

Algorithm selection vs. tuning. Next, we investigate whether it is more important to select the
best possible algorithm family, or to simply run light hyperparameter tuning on CatBoost. For
each dataset, we calculate two quantities: (1) the impact of algorithm selection, measured by the
performance difference between the best tuned tree method and the best tuned neural net; and (2) the
impact of hyperparameter tuning, measured by the performance difference between CatBoost with
default hyperparameters vs. CatBoost tuned via 30 iterations of random search on the validation set.
Surprisingly, we find that for nearly 50% of datasets, light hyperparameter tuning results in a greater
increase in performance than algorithm selection. Once again, this suggests that for a large fraction
of datasets, it is not necessary to use a neural net. In the next section, we explore why a dataset might
be more amenable to a neural net or a GBDT.

2.2 METAFEATURE ANALYSIS

In this section, we investigate the research question, “What properties of a dataset are associated with
certain techniques, or families of techniques, outperforming others, and how can practitioners make
use of this information?” Specifically, we take a meta-learning approach to ask (1) can we predict
which algorithm will perform best on a given dataset, and (2) can we predict whether GBDTs, neural
nets, and/or baselines perform well on a given dataset?

We assess the difference in performance between neural nets and GBDTs, calculated as the difference
in normalized accuracy between the best neural net and the best GBDT method, which we refer to as
∆acc. First, we observe that many dataset properties are correlated with ∆acc over all 1705 dataset
splits. Appendix Table 4 shows the dataset properties with the largest absolute correlation with ∆acc,
and Appendix Figure 6 plots ∆acc with three of these most-correlated properties. In order to show that
these metafeatures are predictive, we train and evaluate a meta-learning model using a leave-one-out
approach: one dataset is held out for testing, while the remaining 170 datasets are used for training,
averaged across all 171 test sets. Appendix Table 5 shows the performance accuracy reaches 0.67 for
decision trees, and 0.74 for an XGBoost model.

A guide for practitioners. Now we present a concrete guide for practitioners to follow when
presented with a new tabular dataset. Specifically, we present decision trees created using all 171
datasets that we study. First, we train a decision tree to predict which of the top five algorithms
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works best: SAINT, ResNet, CatBoost, XGBoost, or TabPFN. The result is a simple heuristic to
show what approach to run, by just computing three simple tests on the new dataset. See Figure 1.
We also compute similar heuristics to predict whether a baseline method will perform just as well
as the best GBDT and neural net. Appendix Figure 7b shows when baseline methods perform well.
Finally, Appendix Figure 7a shows a decision tree trained to identify datasets where the only winning
algorithms are neural nets.

2.2.1 FAILURE MODES
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Figure 3: Normalized accuracy of three algorithms
plotted with its metafeature most-correlated with per-
formance.

In this section, we investigate the research
question, “what properties of a dataset are
associated with a certain method performing
better or worse?” In other words, we ask
when individual algorithms perform well.

We focus on the top-performing algorithms
from previous sections: CatBoost, XGBoost,
ResNet, LightGBM, SAINT, and NODE,
and we focus on their relative performance
among all 22 algorithms. First, we calcu-
late the correlation between each dataset
metafeature and normalized accuracy of
these algorithms; Appendix Table 6 shows
the metafeature with the largest absolute cor-
relation with normalized accuracy.

Figure 3 plots the normalized accuracy for the three algorithms in Table 6 with the greatest absolute
correlation: XGBoost, CatBoost, and ResNet. Our analysis shows, for each algorithm, the one
dataset property that is most associated with the algorithm having strong or poor performance. For
example, somewhat surprisingly, LightGBM and XGBoost perform relatively poorly for smaller
datasets. Our hope is that this analysis is a starting point for the tabular data research community to
develop improvements, ensembles, and even better methods for tabular data.

3 CONCLUSIONS AND FUTURE WORK

In this work, we studied what properties of a dataset make neural nets or trees better-suited to perform
well. We conducted the largest tabular data analysis to date, by comparing 22 approaches across
171 datasets. We found that, for a surprisingly high number of datasets, either the performance
difference between GBDTs and neural nets is negligible, or light hyperparameter tuning is more
important than selecting the best method. By analyzing 965 metafeatures, we presented a guide for
practitioners to decide which method or family of methods to use on a new dataset, and we looked at
what metafeatures are correlated with performance for a given algorithm or family of algorithms.

Future Directions. Our findings raise several questions for future inquiry. First, there are many
datasets where the best neural net approach outperforms the best GBDT, and many other cases where
the reverse is true. This suggests that both neural nets and GBDTs are worthwhile approaches to
tabular datasets, and future work should refine these methods to improve performance. In particular,
our failure mode analysis shows the types of datasets on which a particular method struggles to
perform well. Second, baseline methods perform well for a surprisingly large number of datasets.
Since these baselines are often simpler and less costly to train and test than modern neural nets
and GBDTs, it is worth asking how much additional performance can be achieved through tuning
strong baseline algorithms. Since no algorithm or family of algorithms clearly dominates for tabular
data, it is likely that a diverse ensemble including multiple algorithm families will outperform any
single algorithm—or family. Since we find that several dataset metafeatures are related to algorithm
performance, an ensembling approach might use these metafeatures to build an effective ensemble
for a particular dataset.
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Table 2: Summary statistics for all 1710 training splits used in our experiments; each training split
accounts for 80% of the full dataset. Left columns show the number of instances, number of features,
and number of target classes. Right columns show the number of feature types.

# Inst. # Feats. # Classes # Feature Types
Num. Bin. Cat.

Mean 14930.6 222.4 5.4 205.2 25.2 17.1
Min. 24 2 2 0 0 0
25% 455.2 9.0 2.0 4.0 0.0 0.0
50% 1600.0 21.0 2.0 10.0 0.0 0.0
75% 8239.0 60.0 6.0 51.0 3.0 8.0
Max. 431507 7200 100 7200 1555 1555

A ADDITIONAL RESULTS

A.1 DETAILS OF EXPERIMENTAL SETUP

Metafeatures. We extracted metafeatures using the Python library PyMFE Alcobaça et al. (2020).
Within this library, metafeatures are divided into groups. We used metafeatures from as many groups
as possible, which includes: general (such as number of classes and number of numeric features),
statistical (such as the mean and range of each feature), information theoretic (such as the Shannon
entropy of the target), landmarking (running a baseline such as Naive Bayes or 1-Nearest Neighbor
on a subsample of the dataset), and model-based (summary statistics for some model fit on the
data, such as number of leaf nodes in a decision tree model). Several of the metafeature extraction
processes result in distributions, and we aggregate these using several summary statistics such as
the mean, standard deviation, and interquartile range. Since some of these features have long-tailed
distributions, we also include the log of each strictly-positive metafeature in our analysis.

Experimental design. For each dataset, we use the ten train/test folds provided by OpenML
(Vanschoren et al., 2014), which allows our results on the test folds to be compared with other
works that used the same OpenML datasets. Since we also needed validation splits in order to run
hyperparameter tuning, we used a procedure to split the training folds into train and validation splits.
Given a dataset, for each fold i, we keep the test set the same as in the original OpenML split. We
divide the remaining 9 folds into a validation set (fold i + 1 modulo 10), and the remaining folds
are added to a training set. In this way, all samples are included in training, testing, and validation
splits at the same rate. Henceforth we refer to a complete OpenML dataset as a dataset and we
refer to a single (training, validation, test) split as a dataset-split. Of the 171 datasets there are 1710
dataset-splits; five of these produced errors in all algorithms and were removed from our analysis,
leaving 1705 dataset-split remaining. Table 2 shows summary statistics for all 1710 training splits
used in our experiments. Roughly half of our datasets have a binary classification target (and as many
as 100 target classes), and roughly half of all training sets have fewer than 2000 instances—though
many datasets have tens of thousands of instances.

For each algorithm, and for each dataset-split, we ran the algorithm for up to 10 hours. During
this time we trained and evaluated the algorithm with at most 30 hyperparameter sets (one default
set and 29 random sets). Each parameterized algorithm is given at most two hours to complete a
single train/evaluation cycle. This controls for runtimes of the algorithms – the faster algorithms are
able to search more hyperparameter settings. For nearly all of our experiments, for each algorithm
and dataset fold pair, we use the performance tuned on the validation set; that is, we report the test
performance of the hyperparameter setting that had the maximum performance on the validation set.

A.2 DATASET STATISTICS

Table 2 shows summary statistics for all 1710 training splits used in our experiments. Roughly half of
our datasets have a binary classification target (and as many as 100 target classes), and roughly half
of all training sets have fewer than 2000 instances—though many datasets have tens of thousands of
instances.
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A.3 EXPERIMENTS ON SMALL DATASETS

TabPFN (Hollmann et al., 2022) is a recently released meta-learning approach for tabular data, which
can perform supervised classification in less than a second. However, its current implementation is
limited to datasets with size at most 1000 datapoints, at most 100 features, and at most 10 target
classes. Of the 171 datasets used in our main analysis, 63 fit these criteria. Table 3 shows the average
ranking of all 22 algorithms on these 63 datasets. We find that TabPFN achieves the best average
performance of all algorithms, even beating CatBoost. However, with an average rank of 4.92, it still
does not dominate all other approaches across most datasets. It is notable that XGBoost performed
considerably worse on these smaller datasets, compared to its performance across all 171 datasets.

Table 3: Ranking of 22 algorithms over all 63 datasets where TabPFN can be run, according to test
accuracy. Lower ranks indicate higher accuracy. Rank columns show min, max, and mean ranks over
all datasets, and mean acc. indicates the mean normalized accuracy across all datasets.

Alg. Rank Mean Acc
min max mean (normalized)

TabPFN 1 20 4.92 0.86
CatBoost 1 19 5.68 0.85
ResNet 1 21 7.48 0.76
SAINT 1 20 7.81 0.76
FTTransformer 1 18 8.32 0.76
RandomForest 1 19 8.37 0.76
NODE 1 21 8.48 0.75
XGBoost 1 20 8.86 0.75
DeepFM 1 22 9.43 0.71
MLP-rtdl 1 19 10.10 0.67
SVM 1 20 10.24 0.69
LinearModel 1 21 10.65 0.64
LightGBM 1 21 10.89 0.68
DANet 1 21 11.40 0.68
MLP 1 20 12.19 0.60
TabTransformer 1 22 12.34 0.60
STG 1 22 12.38 0.60
DecisionTree 1 21 12.41 0.62
KNN 1 22 14.00 0.49
NAM 1 22 15.26 0.45
TabNet 3 22 15.83 0.42
VIME 1 22 15.84 0.37

A.4 CRITICAL DIFFERENCE DIAGRAMS

In this section we compare performance of all algorithms across all datasets, to determine whether
rankings are statistically significant. First we use a Friedman test to determine whether performance
differences between each algorithm are significant. If these differences are significant according to
the Friedman test (p< 0.05), then we use a Wilcoxon signed-rank test to determine which pairs of
algorithms have significant performance differences (p<0.05). A Holm-Bonferroni correction is used
to account for multiple comparisons.

Figure 4 shows a critical difference plot indicating significant differences between each algorithm. In
this figure, the average rank of each algorithm is shown on the horizontal axis; if differences between
algorithms are not significant (p≥ 0.05), then algorithms are shown connected by a horizontal bar.

Next, we compare the performance of each algorithm type (GBDT, neural networks, and baselines).
We use the same methodology as in the previous plot. See Figure 5.
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Figure 4: Critical Difference plot comparing all algorithms according to accuracy. Each algorithm’s
average rank is shown as a horizontal line on the axis. Algorithms which are not significantly different
are connected by a horizontal black bar.
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Figure 5: Critical Difference plot comparing three algorithm types, according to accuracy. Each
algorithm’s average rank is shown as a horizontal line on the axis. Algorithms which are not
significantly different are connected by a horizontal black bar.

A.5 METAFEATURE ANALYSIS

Table 4 shows the dataset properties with the largest absolute correlation with ∆acc, and Figure 6
plots ∆acc with three of these most-correlated properties.

To evaluate the predictive power of dataset properties, we train several decision tree models using the
train/test procedure above, with a binary outcome: 1 if ∆acc> 0 (the best neural net beats the best
GBDT), and 0 otherwise. Table 5 shows the performance accuracy of decision trees trained on this
task, with varying depth levels; we also include an XGBoost model for comparison.

We compute similar heuristics to predict whether a baseline method will perform just as well as the
best GBDT and neural net. Figure 7b shows when baseline methods perform well. Finally, Figure 7a
shows a decision tree trained to identify datasets where the only winning algorithms are neural nets.

We calculate the correlation between each dataset metafeature and normalized accuracy of these
algorithms; Table 6 shows the metafeature with the largest absolute correlation with normalized
accuracy.
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Figure 6: Difference in normalized accuracy between the best neural net and GBDT method (∆acc) by
three dataset properties, for all 1705 dataset-splits. Each dataset property here is negatively correlated
with ∆acc, meaning that a higher value of the property corresponds to a higher (lower) accuracy for
the best GBDT (neural net) algorithm. All dataset properties are plotted on a log scale.
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Table 4: Selected metafeatures with the largest absolute correlation with the difference in normalized
accuracy between the best neural net and GBDT method (∆acc), over all 1705 dataset splits.

Description Corr. with ∆acc

Log of the number of instances in the
dataset.

-0.332

Standard deviation of the skewness of all
features

-0.329

Log of the median number of nodes per level
of a decision tree trained on the dataset.

-0.321

Mean of the kurtosis of all features. -0.307

Log of the max. test accuracy of a naive
bayes classifier trained using 10-fold CV on
the dataset.

0.296

Table 5: The test accuracy of tree models for predicting whether the best neural network will
outperform the best GBDT model on a tabular dataset. Results are aggregated over 171 train/test
splits with one dataset family held out for testing in each split. The number of dataset properties used
by any model of each model type is listed in the leftmost column. Top rows include decision trees
(DT≤ n) with maximum depth n; the bottom row is an XGBoost model for comparison.

Model Test Accuracy
(mean ± stddev)

Num.
Metafeatures

DT= 1 0.54 ± 0.28 3
DT≤ 3 0.60 ± 0.29 21
DT≤ 5 0.59 ± 0.28 183
DT≤ 7 0.64 ± 0.29 382
DT≤ 9 0.66 ± 0.27 423

DT≤ 11 0.66 ± 0.30 529
DT≤ 13 0.65 ± 0.29 561
DT≤ 15 0.68 ± 0.30 594
DT≤ ∞ 0.67 ± 0.30 685
XGBoost 0.74 ± 0.33 675

Discussion. Now, we give high-level takeaways from our raw metafeature analyses. First, our work
corroborates some findings from prior work (Grinsztajn et al., 2022): our work (Figure 1) verifies that
NNs are comparatively worse at handling uninformative features. Furthermore, ResNet also performs

(a) Do only neural net methods “win”? (b) Does any baseline method “win”?

Figure 7: Decision trees illustrating two questions for model builders. Left: do only neural net
algorithms “win”? Right: Does any baseline method “win”? In the left figure, homogoneity of
covariance ratio is calculated as in Michie et al. (1995). In the right figure, CanCor indicaes the
canonical covariance between any feature and the one-hot encoded target.
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Table 6: Metafeatures most-correlated with the performance of each top-performing algorithm. The
rightmost column shows the correlation between the metafeature and normalized accuracy over all
1705 dataset-splits.

Alg. Metafeature Description Corr.

CatBoost Min. absolute value of the correla-
tion between any two features

-0.29

XGBoost Number of instances 0.36

LightGBM Number of instances 0.41

ResNet Max. canonical correlation between
any numeric feature and the target

0.34

SAINT Max. canonical correlation between
any numeric feature and the target

0.33

NODE The 1st quartile of the performance
of a naive Bayes classifier over 10
folds of the dataset

0.32

particularly badly in the presence of features with outliers, which is new but related to prior work
(Grinsztajn et al., 2022).

Overall, CatBoost is much more robust at handling datasets that are less “regular”, compared to
ResNet. Specifically, it is comparatively better on: datasets with a higher average skewness across
features, datasets with less-balanced classes, and datasets where the range of feature values (after
normalization) is high. We suspect that this is due to the nature of CatBoost (an ensemble) versus
ResNet (a fixed MLP-like architecture).

Additionally, SAINT performs comparatively better than CatBoost and XGBoost on datasets with
fewer features. We hypothesize that this is because SAINT performs attention across all pairs of
features, and cannot generalize as well on datasets with many features. Finally, SAINT is correlated
with higher performance compared to GBDTs, when the dataset has fewer features.

A.6 RANKING OF DEFAULT AND TUNED ALGORITHMS

We compute rankings of all algorithms according to accuracy, while including both tuned algorithms
and algorithms parameterized with their default hyperparameters. See Table 7.

A.7 TRAINING TIME ANALYSIS

In this section we analyze the relative training time required by each algorithm. Here we only consider
algorithms with their default hyperparameters, so no tuning is used. Table 8 shows a ranking of all
algorithms, according to the total training time per 1 000 training samples. We compute this table on
all datasets where TabPFN can be run, becuase the results over all datasets is similar. These rankings
are calculated by first taking the average training time per 1 000 samples over all 10 folds of all 171
datasets, and then ranking each algorithm for each dataset according to this average train time.

Next, we plot all algorithms according to both normalized accuracy and runtime. Figure 8 plots a
point for each algorithm, where the x-axis is median runtime per 1 000 training samples, and the
y-axis is median normalized accuracy—over all dataset splits.
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Table 7: Ranking of 21 algorithms over all 171 datasets, according to test accuracy, including
algorithms parameterized with default hyperparameters. Rank columns show min, max, and mean
ranks over all datasets, and mean acc. indicates the mean normalized accuracy.

Algorithm Rank Mean
min max mean Acc.

CatBoost 1 30 8.05 0.91
CatBoost (default) 1 31 10.12 0.87
XGBoost 1 30 10.77 0.87
ResNet 1 34 11.51 0.84
XGBoost (default) 1 34 12.02 0.85
NODE 1 33 12.17 0.82
SAINT 1 34 12.27 0.81
FTTransformer 1 31 12.78 0.83
RandomForest 1 33 13.00 0.83
LightGBM 1 34 13.19 0.85
ResNet (default) 1 35 13.94 0.79
SVM 1 32 14.24 0.78
LightGBM (default) 1 34 14.38 0.80
SAINT (default) 1 35 14.48 0.76
NODE (default) 1 34 14.61 0.77
DANet 1 33 15.08 0.83
RandomForest (default) 1 35 16.22 0.76
MLP-rtdl 1 34 16.28 0.74
FTTransformer (default) 1 35 18.01 0.71
STG 1 34 18.73 0.70
DecisionTree 1 35 18.93 0.73
SVM (default) 1 35 19.63 0.64
MLP 1 34 19.66 0.69
LinearModel 1 35 19.95 0.64
MLP-rtdl (default) 1 35 20.11 0.63
DANet (default) 1 33 20.19 0.71
TabNet 1 35 20.56 0.68
DecisionTree (default) 1 35 21.88 0.63
KNN 1 35 22.88 0.59
TabNet (default) 1 35 23.52 0.60
MLP (default) 1 35 23.78 0.56
KNN (default) 1 35 24.61 0.54
VIME 3 34 25.16 0.53
STG (default) 1 35 26.17 0.44
VIME (default) 6 35 30.78 0.23
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Table 8: Ranking of all 22 algorithms over all datasets where TabPFN can be run, according to
average training time per 1 000 samples. Lower ranks indicate lower training times. Rank columns
show min, max, and mean ranks over all datasets. Right columns show average training time per
1 000 samples over all 10 training folds, and the number of datasets considered for each algorithm.

Alg. Rank Mean Train Time
min max mean (s/1000 samples)

TabPFN 1 3 1.16 <0.01
KNN 1 3 2.02 <0.01
DecisionTree 1 4 2.86 0.02
LinearModel 3 5 4.27 0.06
SVM 4 8 5.21 0.22
LightGBM 5 12 6.46 0.82
RandomForest 5 8 6.65 0.71
XGBoost 5 8 7.46 1.42
CatBoost 8 19 9.65 10.41
DeepFM 9 11 9.79 6.08
MLP-rtdl 9 18 12.13 19.69
ResNet 10 17 12.86 23.30
VIME 9 17 13.33 17.83
STG 9 17 13.46 19.01
MLP 9 18 14.02 25.70
FTTransformer 11 19 14.63 28.98
TabNet 10 20 16.02 30.75
TabTransformer 12 20 16.32 33.25
DANet 15 22 18.73 53.09
NODE 14 22 18.95 62.21
SAINT 16 22 19.73 135.43
NAM 17 22 20.57 212.99
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Figure 8: Median runtime vs. median normalized accuracy for each algorithm, over all 1040 dataset
splits (for all 104 datasets). Error bars indicate the 20th and 80th percentile over all dataest splits.
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