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ABSTRACT

Material characterization using electron micrographs is a crucial but challenging
task with applications in various fields, such as semiconductors, quantum materials,
batteries, etc. The challenges in categorizing electron micrographs include but are
not limited to the complexity of patterns, high level of detail, and imbalanced data
distribution(long-tail distribution). Existing methods have difficulty in modeling
the complex relational structure in electron micrographs, hindering their ability to
effectively capture the complex relationships between different spatial regions of
micrographs. We propose a hypergraph neural network(HgNN) backbone architec-
ture, a conceptually alternative approach, to better model the complex relationships
in electron micrographs and improve material characterization accuracy. By utiliz-
ing cost-effective GPU hardware, our proposed framework outperforms popular
baselines. The results of the ablation studies demonstrate that the proposed frame-
work is effective in achieving state-of-the-art performance on benchmark datasets
and efficient in terms of computational and memory requirements for handling
large-scale electron micrograph-based datasets.

1 INTRODUCTION

Accurate development, characterization, and testing of miniaturized semiconductor devices are
essential in leading-edge chip design to ensure their proper functioning and performance. State-of-
the-art imaging and analysis techniques(Holt & Joy (2013)) play a critical role in the fabrication,
inspection, and testing of the next-generation miniaturized semiconductor devices, such as those with
a feature size of 7nm or smaller, as they help ensure their quality and reliability. The advanced imaging
of miniature devices in the semiconductor industry typically utilizes a broad spectrum of electron beam
tools, including Scanning Electron Microscopy(SEM), Transmission Electron Microscopy(TEM),
Reflective Electron Microscopy(REM), and others. Electron microscopes, as ultra-modern imaging
tools, produce high-magnification and high-resolution images of material specimens, known as
electron micrographs, to perform microstructural characterization or identification of materials,
which is essential for the accurate design fabrication, and evaluation of miniaturized semiconductor
devices. However, classifying electron micrographs is challenging due to high intra-class variance,
low inter-class dissimilarity, and multiple spatial scales of visual patterns. Figure 1 illustrates the
various challenges in the automatic nanomaterial identification task. The de facto standard neural-
network architectures for vision tasks such as ConvNets(Iandola et al. (2016), He et al. (2016)),
Vision transformers(ViTs, Dosovitskiy et al. (2020), Liu et al. (2021), d’ Ascoli et al. (2021), Chen
et al. (2021b)), hybrid architectures(Wu et al. (2021), Graham et al. (2021), Wang et al. (2022)) and
MLP-based vision models(Tolstikhin et al. (2021), Touvron et al. (2021a)) do not explicitly model
the higher-order dependencies between the multiple grid-like patches(also referred to as tokens) of
the electron micrographs. Nevertheless, this work aims to explore an alternative effective, efficient
neural-network architecture beyond traditional methods for modeling the fine-grained interrelations
among the spatially and semantically dependent regions(patches) of the electron micrographs for
automatic nanomaterial identification tasks via the hypergraph framework. We utilize the hypergraphs
as a mathematical model(Ouvrard (2020); Feng et al. (2019); Gao et al. (2022); Yadati et al. (2019))
for a structured representation of the electron micrographs to learn the hierarchical relations among
the spatial regions(patches) unconstrained by their spatial location in the micrograph. We begin
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with a hypothesis, that the electron micrographs have an inherent hypergraph structure that capture
a wide range of structural and property information from sub-hypergraphs of various sizes, and
represents the higher-order dependencies between the patches in the electron micrographs. We
present the Vision Hypergraph Neural Networks(for short, Vision-HgNN) designed to automatically
encode the dominant structural and feature information of the visual hypergraphs and then learn
relation structure-aware hypergraph-level embeddings to perform effective neural relational inference
on the downstream multi-class classification task. The proposed visual hypergraph representation
learning framework is designed to identify discrete visual elements(low-level entities) and their
higher-order dependencies, and to prune redundant visual elements to learn an efficient representation
of scale-variant visual elements(high-level entities) for improved perception and reasoning of the
visual content in hypergraph-structured micrographs to enhance classification performance. The
proposed framework is intended to offer better generalization and scalability for large-scale electron
microscopy image corpus-based classification tasks.

(b) The high inter- class similarity in different materlal categorles(left to r1ght films, powder,
particles, porous sponges).

(c) Multi-spatial scales of patterns in electron micrographs of particles.

Figure 1: The figure depicts the various challenges in the electron micrograph classification task on
the SEM dataset(Aversa et al. (2018)).

2 PROBLEM STATEMENT

Consider a dataset consisting of visual hypergraph-label pairs (G;, y;) where the ground-truth label of
G; is denoted by y;. The objective of the classification task is to learn a novel mapping neural network
function f : G; — y; that maps the discrete visual hypergraphs to the set of predefined categories.
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Figure 2: For illustration purpose, an electron micrograph(MEMS device, Aversa et al. (2018)) was
split into 3 x 3 patches. This figure depicts a regular grid, a sequence, a graph, and a hypergraph
representation of an electron micrograph. (a) ConvNets operate on a grid of pixels, (b) ViTs operate
on a sequence of grid-like patches, (¢) GNNs operate on visual graphs where patches are viewed as
nodes, and (d) HgNNss operate on visual hypergraphs where the patches represent the hypernodes to
perform classification tasks. The visual graph and hypergraph structure representations are learned
through the nearest neighbor search algorithm. They are linked based on the visual content and are
not necessarily determined by their spatial location in the micrograph. The edges in the graph model
pair-wise relations among the patches, while hyperedges model multi-dyadic relationships.
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3 PROPOSED APPROACH

As illustrated in Figure 3, our framework consists of the following modules. (a) hypergraph structure
learning module, for brevity, HgSL backbone, to learn the discrete visual hypergraph representations
of the electron micrographs through pairwise proximity function. (b) a local and global neighborhood
connectivity-driven hypergraph attention network, for brevity, the HgAT backbone is designed to cap-
ture short, and moderate-range dependencies, i.e., encapsulates the hypergraph’s structural and feature
information in the hypernode-level embeddings. (c) a self-attention mechanism-based-hypergraph
transformer network, for brevity, an HgT backbone with no hypergraph spatial priors to learn all
pairwise hypernode interactions for better learning of the long-range pairwise dependencies. (d) the
hypergraph read-out module, for brevity, the HgRo backbone, performs the global average pooling
that collapses hypernode-level embeddings to obtain the single hypergraph-level embedding. (e) a
linear projection layer and a normalized exponential function transform the hypergraph-level embed-
ding to a multinomial probability distribution over the predefined electron micrograph categories to
predict the visual hypergraph category.

Electron micrograph, 7 i Z/f
gpg» HgSL i HgAT —| HgT [—| HgRo |—

Figure 3: The isotropic Vision-HgNN architecture. y¥ denotes the model predictions.

3.1 HYPERGRAPH STRUCTURE LEARNING(HGSL)

The HgSL operates in two phases. At first, it performs tokenization of electron micrographs. Next, it
optimizes the discrete visual hypergraph structure through a differentiable approach to learn the more
robust and optimal representation through the nearest neighbor search technique and formulate the
posterior classification task as message-passing schemes with hypergraph neural networks.

3.1.1 ELECTRON MICROGRAPH TOKENIZER

We split an electron micrograph with the size h x w x ¢, where (h, w) is the resolution of the RGB
image, and c is the number of channels into non-overlapping n uniform patches, where the size
of each patch is p X p X ¢ and p is patch size. We reshape the patches to obtain feature matrix
X’ € Rm*P’c, We linearly transform the feature matrix, X/, through a trainable embedding layer E to
compute a refined feature matrix X € R"*? as described below,

X = X'E; E € RP x4 )
The row i of the feature matrix X = [le,; e ;xg] represents the (low-dimensional) feature representa-
tion for patch m;) € R4 i=1,2,...,n, where d is the predefined feature dimension.

3.1.2 HYPERGRAPH REPRESENTATION

We represent the patches as the unordered hypernodes of an undirected visual hypergraph denoted as
V = {v1,vs,...,v,}. For each hypernode v;, we form an undirected hyperedge e, from the hypernode
v; to vy; if v; is among the top-K visual-semantic-nearest neighbors of v;. Thus we obtain n
hyperedges incident with K + 1 non-repeating hypernodes. The hyperedges describe the relations
and capture more complex relationships and interdependencies among hypernodes in the visual
hypergraphs. We then obtain a hypergraph G = (V, £, X) where £ = {e1, ea, ..., e, } denotes the set of
hyperedges and X € R™*¢ is the hypernode feature matrix. Each row ¢ in X represents the hypernode
feature vector, x,, € R<. Note: Ty, 1s the patch feature representation, x;) The incidence matrix,
H € R"*", describes the hypergraph structure. H; , = 1 if the hyperedge p incident with hypernode
1 and otherwise 0. The hyperparameter K < n determines the sparsity of the visual hypergraph.
Let N, ; = {v;|H;, = 1} represent the subset of hypernodes v; incident with any hyperedge p. The
intra-edge neighborhood of the hypernode i is given by N, ;\i. It is a localized group of perceptually
similar patches and captures higher-order relationships. The inter-edge neighborhood of hypernode
i, Nip = {€p/H;, = 1}, spans the spectrum of the set of hyperedges e, incident with hypernode
1. There is no natural ordering of the hypernodes in the hypergraph. To preserve patch-locality
information in the main hypergraph, we linearly add the trainable position embeddings(E,,) to the
hypernode feature vectors to enable position awareness. The HgSL module computes the hypernode’s
positional embeddings based on the intra- and inter-edge neighborhood in the hypergraph. Equation
2 shows the transformed feature vector of the hypernodes.

[Xogi e i Xo, ] = [Xoys -« s X, ]+ Epos; Epos € R4 2)
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3.2 MODEL ARCHITECTURE

Figure 4 depicts the Vision-HgNN framework. The Hypergraph attention network(HgAT) performs
the message-passing schemes on the visual hypergraphs to obtain (low-dimensional) hypernode
embeddings. The Hypergraph transformer(HgT) utilizes the self-attention mechanism for transform-
ing the hypernode embeddings determined by the HgAT operator to compute refined hypernode
embeddings(z,"", ..., z,""). We discussed the HgAT and HgT operators in the appendix. The HgRo
module performs the average pooling of hypernode embeddings(z.™", .. ., z5"*") to obtain hypergraph-
level embedding z™#" ¢ R?. We apply a linear projection and softmax to transform z %" for
determining the model predictions y? = softmax (W?**zl#1), where Wo!* € R4x4.

3.3 ALGORITHMIC ARCHITECTURE
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Figure 4: For illustration, we split the electron micrograph into 3 x 3 patches. We represent the
electron micrograph as a patch-attributed visual hypergraph. The framework presents an end-to-end
visual hypergraph representation learning with Hypergraph Neural Networks for categorization tasks.

4 EXPERIMENTS AND RESULTS

4.1 DATASETS

We conduct experiments on the SEM dataset(Aversa et al. (2018)) for automatic nanomaterials
identification. The human-annotated dataset contains a set of 10 categories belonging to a wide range
of nanomaterials spanning a broad range of particles, nanowires, patterned surfaces, etc., for a total
of ~21,283 electron micrographs. The initial experimental results are reported by Modarres et al.
(2017) on the subset of the complete dataset. Due to the unavailability of the subset dataset publicly,
we conducted experiments on the original dataset(Aversa et al. (2018)), which contains 12% more
samples. The dataset curators(Aversa et al. (2018)) had not shared the predefined train/validation/test
splits, so we leveraged the k-fold cross-validation technique to evaluate our model performance
for competitive benchmarking with the varied baseline models. Additionally, we utilized several
open-source material benchmark datasets to demonstrate the effectiveness of our proposed method.

Classes

Algorithms Parameters Top-1 Top-2 Top-3 Top-5 Algorithms Parameters Top-1 Top-2 Top-3 Top-5
AlexNet(Krizhevsky et al. (2017)) 57.0M 0519 0.593 0.681 0.785 GBT(Bielak et al. (2021)) 0.71IM  0.524 0.612 0.703 0.794

@ DenseNet(Huang et al. (2017)) 0.24M  0.521 0.722 0.869 0.912 - GRACE(Zhu et al. (2020)) 0.74M  0.602 0.639 0.726 0.784
Z ResNet(He et al. (2016)) 027M  0.524 0.773 0.904 0.915 8 BGRL(Thakoor et al. (2021)) 0.69M  0.589 0.647 0.705 0.739
%VGG(Simonyan&Zisserman (2014))| 34.4M  0.523 0.657 0.729 0.783 InfoG(Sun et al. (2019)) 0.68M  0.572 0.643 0.717 0.767
O | GoogleNet(Szegedy et al. (2015)) 0.26M  0.573 0.857 0.914 0.942 APPNP(Klicpera et al. (2018)) 0.74M  0.625 0.726 0.825 0.855
SqueezeNet(Iandola et al. (2016)) 0.74M  0.467 0.476 0.621 0.684 AGNN(Thekumparampil et al. (2018))| 0.52M  0.533 0.745 0.851 0.954
CCT(Hassani et al. (2021)) 04IM  0.586 0.795 0.886 0.952 4 ARMA(Bianchi et al. (2021)) 045M  0.549 0.763 0.857 0.937

@ ConViT(d’ Ascoli et al. (2021)) 0.60M  0.596 0.724 0.836 0.941 5 DNA(Fey (2019)) 0.84M  0.607 0.683 0.772 0.913
E PVTC(Wang et al. (2022)) 1.30M  0.572 0.758 0.826 0.917 % GAT(Velickovic et al. (2017)) 0.63M  0.524 0.689 0.814 0.926
7 SwinT(Liu et al. (2021)) 27.8M  0.658 0.763 0.904 0.928 z GGC(Li et al. (2015)) 0.8IM  0.617 0.813 0.845 0.951
E VanillaViT(Dosovitskiy et al. (2020)) 1.79M  0.638 0.834 0.868 0.943 E GC(Morris et al. (2019)) 0.59M  0.606 0.769 0.913 0.962
3 CaiT(Touvron et al. (2021c¢)) 0.38M  0.627 0.741 0.879 0.945 E GCN2C(Chen et al. (2020a)) 0.62M  0.703 0.829 0.874 0.957
“g LeViT(Graham et al. (2021)) 16.8M  0.625 0.776 0.863 0.957 E CC(Defferrard et al. (2016)) 0.50M  0.566 0.782 0.847 0.913
E NesT(Zhang et al. (2022)) 16.IM  0.643 0.835 0.923 0.952 S GUNet(Gao & Ji (2019)) 0.96M  0.635 0.746 0.873 0.928
= | PatchMerger(Renggli et al. (2022)) 326M  0.561 0.703 0.842 0.939 = MPNN(Gilmer et al. (2017)) 0.52M  0.662 0.825 0.896 0.972
£ RegionViT(Chen et al. (2021a)) 122M  0.589 0.812 0.863 0.936 ? RGGC(Bresson & Laurent (2017)) 0.66M  0.658 0.744 0.906 0.947
> T2TViT(Yuan et al. (2021)) 10.3M  0.672 0.841 0911 0.927 &} SGAT(Kim & Oh (2022)) 0.55M  0.592 0.694 0.892 0.955
ViT-SD(Lee et al. (2021)) 447M  0.609 0.746 0.873 0.949 TAGC(Du et al. (2017)) 0.57M  0.637 0.753 0.827 0.962
Vision-HgNN 091IM  0.819 0.864 0.942 0.994 Vision-HgNN 091IM  0.819 0.864 0.942 0.994
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Algorithms Parameters Top-1 Top-2 Top-3 Top-5 Algorithms Parameters Top-1 Top-2 Top-3 Top-5
Barlowtwins(Zbontar et al. (2021))| 8.99M  0.176 0.264 0.337 0.449 CVT(Wu et al. (2021)) 0.26M  0.551 0.764 0.843 0.965
SimCLR(Chen et al. (2020b)) 8.73M  0.189 0.243 0.408 0.475 CrossViT(Chen et al. (2021b)) 0.84M  0.493 0.738 0.842 0.963
Byol(Grill et al. (2020)) 8.86M  0.163 0.245 0.323 0.437 & ATS(Fayyaz et al. (2021)) 326M  0.536 0.725 0.805 0.942
Moco(He et al. (2020)) 8.73M  0.174 0.196 0.264 0.468 S|  DeepViT(Zhou et al. (2021)) 326M  0.537 0.762 0.893 0.961
Nnclr(Dwibedi et al. (2021)) 9.12M  0.153 0.271 0.441 0.538 Distallation(Touvron et al. (2021b))| 2.06M  0.524 0.733 0.859 0.953
SimSiam(Chen & He (2021)) 9.0IM  0.196 0301 0.416 0.561 PiT(Heo et al. (2021)) 448M  0.547 0.716 0.845 0.962
Vision-HgNN 09IM  0.819 0.864 0.942 0.994 Vision-HgNN 09IM  0.819 0.864 0.942 0.994

Table 1: Comparative study of our proposed method and the baseline algorithms.

4.2 BENCHMARKING ALGORITHMS

We train the Vision-HgNN framework through a supervised learning approach for joint visual
hypergraph inference and category prediction of micrographs. Table 1 provides a performance
comparison of the Vision-HgNN framework with other baseline models, which include ConvNets,
GNNs(Rozemberczki et al. (2021); Fey & Lenssen (2019)), and ViTs(al. (2022b;a)) architectures.
In addition, we utilize the different self-supervised learning algorithms: Vision Contrastive Learn-
ing(VCL, et al. (2020))) and Graph Contrastive Learning(GCL, Zhu et al. (2021))) for comparison
with our proposed method. We ensure a fair and rigorous comparison between the Vision-HgNN
framework and the baseline algorithms by generating the results under identical experimental settings.
The evaluation metric is the Top-N accuracy, where N € {1,2,3,5}. The standard deviation values
are less than at most 4% of the mean value. The proposed method demonstrates the best performance
with a high Top-1 accuracy score of 81.9% and a Top-5 score of 99.4%. The Vision-HgNN model
brings a significant relative improvement of 21.87% and 16.50% in the Top-1 scores compared to the
next-best baseline models T2TViT(Yuan et al. (2021)) among ViTs and GCN2C(Chen et al. (2020a))
among GNNs. The ablation studies, hyperparameters optimization, and other additional experimental
results are reported and discussed in the appendix.

5 CONCLUSION

The challenge associated with the design of chips smaller than 7 nanometers is the increased complex-
ity of the manufacturing process. As feature sizes shrink, the tolerance for errors in the manufacturing
process decreases, making it more difficult to produce high-quality chips with consistent performance.
In addition, the smaller feature sizes can lead to increased variability in the performance of the
transistors, which can negatively impact the overall performance and reliability of the chip. Indeed,
state-of-the-art imaging and analysis techniques are crucial in the development of next-generation
semiconductor devices with feature sizes of 7nm or smaller. These techniques play a prominent role
in the fabrication, inspection, and testing processes and are essential for driving the development of
advanced microelectronics technologies. The high-resolution imaging of the device structures and
materials allows for the identification of potential defects and deviations from design specifications,
which can then be addressed through process optimization or design modification. In addition, these
challenges present significant opportunities for innovation and the development of automatic material
characterization methods for electron micrographs, which is essential for ensuring the quality and
reliability of semiconductor devices. We conduct the first comprehensive study of the hypergraph-
neural networks for electron micrograph classification tasks to improve the accuracy and efficiency
of material characterization in various applications. We learn the optimal visual hypergraph structure
to capture complex relationships and interactions between different spatial regions in an electron
micrograph, allowing for a more robust and accurate representation of the micrograph. Hypergraph
Neural Networks(HgNNs) operate on visual hypergraphs, where the patches in the micrograph
are represented as hypernodes. The hyperedges in the hypergraph represent relationships between
multiple patches, allowing for the capture of higher-order relationships between the patches in the
micrograph. The experimental results corroborate our approach of augmenting HgAT layer stacks
with a subsequent fully-connected transformer module(HgT) to achieve better performance compared
to the state-of-art methods on automatic electron micrographs classification tasks. For future work,
we would endeavor to generalize our framework on other electron micrograph datasets like REM,
TEM, FE-SEM, STEM, etc., for anomaly detection, segmentation, etc.
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A APPENDIX

A.1 MODULES DESCRIPTION
A.1.1 HYPERGRAPH ATTENTION NETWORK(HGAT)

The HgAT(Velickovié et al. (2017); Brody et al. (2021)) architecture extends the traditional convolu-
tion operation on the visual hypergraphs. It combines both local and global attention mechanisms to
learn robust and expressive representations of visual hypergraphs. The hypergraph encoder(HgAT)
is designed to utilize the hypergraph structure(H) and feature matrix(X) to compute the hypernode
embeddings h,, € R Vi € V. We learn the optimal embeddings h,, to preserve the high-level
visual content embedded in the structural characteristics and feature attributes of the hypergraph.
The layer-wise HgAT operator performs local and global-neighborhood aggregation for utilizing the
powerful relational inductive bias of spatial equivariance encoded by the hypergraph’s connectivity to
model the fine-grained correlations explicitly between visual patches. We perform the attention-based
intra-edge neighborhood aggregation for learning the latent hyperedge embeddings as,
Z
W =5"o( N AW ) =1 Lygar 3)
z=1  i€EN,;

where the superscript £ denotes the layer and for scenario £ = 1, hﬁ?’z) = Xy,. he, € R? denotes the
hyperedge embeddings. We compute multiple-independent embeddings in each layer with different
trainable parameters and output summed-up embeddings. o is the sigmoid function. The attention
coefficient v, ; determines the relative importance of the hypernode ¢ incident with the hyperedge, p
and is computed by, .
(t,2) exp () (%) (D (-1,2)

= gy = RelU (W”nli=12)) )

Yien,, exp (")
where e, ; denote the attention score. We then model the complex relations between hyperedges and
hypernodes by performing the attention-based inter-edge neighborhood aggregation for learning the

expressive hypernode embeddings as described by,

zZ
h(? =3 ReLU (WTh{™12) + 5™ gEIWTRED) 0= 1. Liygar ©)
z=1 PEN; p
where W(? W*) ¢ R¥x¢ are learnable weight matrices. We utilize the ReLU function to introduce
non-linearity for updating the hypernode-level embeddings. The normalized attention scores /3; ,,
specifies the importance of hyperedge p incident with hypernode ¢ and are computed by,

exp(ey;”)
0,z
pen, exp(657)

where W( ¢ R?* and W € R2¢ are weight matrix and vector. @ denotes the concatenation operator.
®4,p 1s the unnormalized attention score. Stacking multiple layers broadens the receptive field, but
performance degrades due to over-squashing(Alon & Yahav (2020)) and over-smoothing issues(Li
et al. (2018)). In between each layer, we apply batch norm and dropout for regularization. We
concatenate the embeddings of each HgAT layer, transform it through a linear projection, and serve
as input to the HgT network.

B;i;Z) _ ¢Z(f/1;z) — RelLU (W:(;Z) . (W(Qz)hsf_l’z) @W;Z>hgﬂz>)) (©6)

A.1.2 HYPERGRAPH TRANSFORMER(HGT)

The HgT operator generalizes the transformer neural networks(Vaswani et al. (2017)) to arbitrary
sparse hypergraph structures with full attention as a desired inductive bias for generalization. The
permutation-invariant HgT module models the pairwise relations between all hypernodes and updates
the hypernode-level embeddings by exploiting global contextual information in the visual hyper-
graphs. The HgT module with no structural priors acts as a drop-in replacement for various other
methods of stacking multiple HgNN layers with residual connections(Fey (2019), Xu et al. (2018)),
virtual hypernode mechanisms(Gilmer et al. (2017); Pham et al. (2017)), or hierarchical pooling
schemes(Rampések & Wolf (2021), Lee et al. (2019)) to model the long-range correlations in the
visual hypergraph. The HgT operator incentivizes learning the fine-grained relations to facilitate
learning of expressive embeddings by spanning large receptive fields to effectively capture the high-
level semantic information embedded in the hypergraph structure. The transformer encoder(Vaswani
et al. (2017)) consists of alternating layers of multiheaded self-attention(MSA) and MLP blocks. We
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apply Layernorm(LN(Ba et al. (2016))) for regularization and residual connections after every block.
We skip the details for conciseness and to avoid notion clutter. Inspired by ResNets(He et al. (2016)),
we add skip-connections through an initial connection strategy to relieve the vanishing gradients and
over-smoothing issues.

0 = MSA (LN (h{™" + x'E)) + h{"Y, 0=1...Lyg )
z, = MLP (LN (0'\")) + ", 0=1... Lug ®)

v;

We do not add position embeddings in skip-connections as HgAT operator had encoded the structural
information into the hypernode embeddings. HgT overcomes the inherent information bottleneck
of HgAT representational capacity for effective hypergraph summarization. It does so by learning
hypernode-to-hypernode relations beyond the original sparse structure and distills the long-range
information in the downstream layers to learn task-specific expressive hypergraph embeddings.

A.2 ALGORITHMIC ARCHITECTURE

Algorithm 1 summarizes the hypergraph structure learning(HgSL) module. While Algorithm 2 gives
an overview of the Vision-HgNN framework. Our implementation utilizes the HgAT module to
encode discrete visual hypergraphs to compute the hypernode embeddings, and the HgT module
refines the embeddings through the self-attention mechanism. The HgRo module computes the
hypergraph-level embedding to facilitate the classification task

Algorithm 1: Hypergraph structure learning

Input: Electron micrograph, X’ € RM>*wXe wwhere h is the height, w is the width, and c is the
number of channels, patch size p, patch feature representation size (d)

Output: Visual hypergraph G, incidence matrix H € R™*", feature matrix X € R™*¢
Model Parameters: Patch and Position embedding matrices E € RPzCXd, E,.. € Rnxd

1: reshape electron micrograph, X’ € R"xwx¢ & X/ ¢ R”Xp%,x;) € Rp2c,i =1,...,n
2: [Xyyy - vy Xy, | = [Xll,;xi;-u ;Xzﬂ Ex,, €RY i=1,...,n // linear
transformation
3: [Xvys .- Xu, | = [Xvys -, X, | + Epos, // add position embeddings
4: X = [Xy,, .00, Xy, |, X € R?X // feature matrix
for patchi=1,...,ndo
for patch j =1,...,ndo
dl(f’j) = (Zgzl \xs,zi) - XE,?|2)1/2;1' £ ] // dgf}) denotes the distance

similarity measure between a pair of hypernodes, ¢ and j
connected by any hyperedge p
end
end
5:H;, = 1{j € Top-K (min {d"},j € V) }|H;, = 1
// Top-K returns the indices of the K-nearest hypernodes of i
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Algorithm 2: Vision-HgNN framework

Input: Visual hypergraph G, incidence matrix H € R™*", the number of hypergraph attention
layers Lygar, number of transformer layers Ly, feature matrix X € Rnxd

Output: model predictions of electron micrographs category, y?

Model Parameters: W) W{*) W) wout ¢ Rnxd | ¢ Rp*exd

for layer { = 1, ..., Lyear do

evaluate oz}(ff) // attention coefficient
hé? = ZZZZI o Ziepriagf)Wéz)h%1’z)> // hyperedge embeddings
evaluate Bl-(i’,z) // attention coefficient
4 Z z l—1,z 0,z z 0,z
hSJi) => . ,;RelLU (W(() )hgi )+ ZpeNW ﬁi(}p )Wg )hép )> // hypernode
embeddings
end ) (Ligar)
compute h,, = [hy,||. .. ||hy,"" W, W € R®Lugarxd
for layer { =1, ..., Lyer do
h’,(f) = MSA (LN (h%il) + X;E)) + h’(ffl) // apply multi-head
self-attention
z, = MLP (LN (h'g?)) + h’g,f) // refine hypernode-level embeddings

end
gl — READOUT({zﬁngT, .. ,zfn”gT ) // Aggregate hypernode embeddings
Y= softmax(WO“tzLHgT) // Category predictions

A.3 EXPERIMENTAL SETUP

The data pre-processing involves per electron micrograph standard intensity normalization with a
mean and covariance of 0.5 across all the channels to obtain normalized electron micrographs to
the [-1, 1] range. The size of each electron micrograph in the SEM dataset (Aversa et al. (2018)) is
1024 x 768 x 3 pixels. We resize electron micrographs to obtain a relatively lower spatial resolution,
256 x 256 x 3 pixels, and split the downscaled electron micrographs into non-overlapping uniform
patches of size 32 x 32 x 3 pixels. The total number of patches(n) for each electron micrograph is 64.
The position embedding(E,,s) and patch embedding(E) have a dimensionality size(d) of 128. We
obtain the visual hypergraph representations of the electron micrographs through the Top-K nearest
neighbor search algorithm with the optimal K value is 20. We utilize the k-fold cross-validation
technique to evaluate the performance of our proposed method with k = 10. The training dataset
comprises consecutive “k-2" of the folds. The validation and test dataset contains each with “1” in
the remaining “2” folds. We implement an early stopping technique on the validation set to prevent
the model from over-fitting and for model selection. The model is trained for 100 epochs to learn
from the training dataset. We set the initial learning rate as 1e 2. The recommended batch size is
48. The optimal number of layers of HgAT and HgT operators, i.e., Lygar and Lygr, are 2. The
number of multiple-independent replicas(Z) is 4 for the HgAT operator. We utilize a learning rate
scheduler to drop the learning rate by half if the Top-1 accuracy shows no improvement on the
validation dataset for a waiting number of 10 epochs. We run the adam optimization algorithm to
minimize the cross-entropy loss between the ground-truth labels and the model predictions. We
train our model and baseline methods on multiple NVIDIA Tesla T4, Nvidia Tesla v100, and
GeForce RTX 2080 GPUs built upon the PyTorch framework. We evaluate the model performance
and report the evaluation metrics on the test dataset. Each computational experiment runs for a
unique random seed. In this work, we report the ensemble average of the results obtained from five
computational experiments. The experimental results reported are the average value of the different
random seeds-based experimental run outputs.

A.4 BASELINE SETTINGS

We construct the visual graphs representation of the electron micrographs through the Top-K nearest
neighbor search technique, where the patches had viewed as nodes and the edges model the pairwise
associations between the semantic nearest-neighbor nodes. The baseline GNNs (Rozemberczki
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et al. (2021); Fey & Lenssen (2019)) operate on the visual graphs to perform the classification task
trained through the supervised learning approach. We utilize the graph contrastive learning(GCL,
Zhu et al. (2021)) algorithms to learn the unsupervised node embeddings. The node-level graph
encoder of the GCL algorithms had modeled by the GAT (Velickovi¢ et al. (2017)) algorithm. We
compute the graph-level embedding through the sum-pooling of the node-level embeddings. The
random Forest(RF) algorithm utilizes the unsupervised graph-level embeddings to predict the electron
micrograph categories trained through the supervised learning technique. We report the RF model
classification accuracy on the holdout data to evaluate the quality of unsupervised embeddings. The
baseline ConvNets operate on the regular grid of electron micrographs to perform classification tasks
trained through a supervised learning approach. The baseline ViTs (al. (2022b;a)) were trained on
the supervised learning classification task to learn from the sequence of patches of each electron
micrograph. Furthermore, we leverage visual-contrastive learning(VCL, et al. (2020)) techniques,
i.e., computer-vision-based self-supervised algorithms for performing contrastive learning of visual
representations to report classification accuracy. We utilized the ResNet backbone architecture for
feature extraction. To reduce the baseline model complexity, we set the dimensionality size(d) of the
patches to 64. We leverage the 10-fold cross-validation technique to evaluate the performance of the
baseline methods. We train the baseline models for 100 epochs. The batch size is 48.

A.5 STUDY OF MODULES

We conduct detailed ablation studies to shed light on the relative contribution of modules for the
improved overall performance of our framework. We gradually exclude the modules to design several
variants of our framework and then investigate the variant model’s performance compared to the
Vision-HgNN model on the SEM dataset to demonstrate the efficacy and support the rationale of
our modules. We refer to w/o HgAT and w/o HZT as Vision-HgNN models without HgAT and HgT
modules, respectively. Table 2 shows the results of the ablation studies.

Algorithms Top-1 Top-2 Top-3 Top-5 Avg-Precision | Avg-Recall | Avg-F1 Score
Vision-HgNN | 0.819+0.005 | 0.864+0.009 | 0.942+0.005 | 0.990+0.001 | 0.784+0.006 | 0.718+0.008 | 0.731+0.004
w/o HgAT | 0.682£0.008 | 0.78310.007 | 0.900£0.013 | 0.968+0.007 | 0.7134+0.008 | 0.662+0.005 | 0.657£0.005
w/o HgT 0.49740.013 | 0.644+0.010 | 0.8344-0.008 | 0.946+0.009 | 0.588-+0.007 | 0.543+0.002 | 0.54840.001

Table 2: The table reports the results of ablation studies.

Multi-class metrics

Category
| Precision | Recall | F1Score |

Biological 0.7004:0.016 | 0.7284:0.004 | 0.71340.007
Tips 0.705+0.014 | 0.65640.007 | 0.608+0.016
Fibres 0.922+0.033 | 0.62540.010 | 0.751+0.011
Porous Sponge 0.833+0.009 | 0.8524-0.009 | 0.842+0.009
Films Coated Surface | 0.84940.002 | 0.83740.003 | 0.8434-0.000
Patterned surface 0.766+0.007 | 0.823+0.020 | 0.793+0.013
Nanowires 0.751£0.009 | 0.75640.001 | 0.754+0.004
Particles 0.8160.017 | 0.4814:0.055 | 0.5724+0.033
MEMS devices 0.6760.003 | 0.70540.000 | 0.670+0.013
Powder 0.822+0.013 | 0.72140.002 | 0.767+0.004

Table 3: The table reports the performance of the Vision-HgNN framework on each electron-
micrograph category classification task of the SEM dataset.

We additionally report the average precision, recall, and F1 score across the electron micrograph
categories to evaluate the framework performance on the highly unbalanced SEM dataset. The w/o
HgAT variant model reports a drop in performance of 9.06% in the precision score, 7.79% in the
recall, and 10.12% in the F1 score w.r.t. Vision-HgNN model. Likewise, regarding w.r.t precision,
recall, and F1 score, we observe a 25%, 24.37%, and 25.03% decline in w/o HgT variant model
performance compared to the Vision-HgNN model. The variant model’s performance disentangles the
relative gains of each module and corroborates the hypothesis of the joint optimization of modules for
better learning on the visual hypergraphs. The experimental results support our modules, HgAT and
HgT effectiveness for capturing the short-range and high-level, long-range correlations, respectively,
for the improved overall performance of our proposed framework. Table 3 reports the unaveraged
multi-class evaluation metrics such as precision, recall, and F1 score of the Vision-HgNN framework
performance on each predefined electron micrograph category. The results reported in Table 3
demonstrate that our proposed framework generalizes well despite the complexity of patterns across
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the broad spectrum of electron micrograph categories, with a relatively higher score for the more
labeled electron micrograph categories w.r.t. to the fewer labeled categories. The less electron
micrograph-specific relational inductive bias offers an advantage for the Vision-HgNN framework to
perform better on the classification task than the traditional methods.

A.6 ABLATION STUDIES

Our proposed Vision-HgNN framework consists of HgSL, HgAT, HgT, and HgRo modules. We study
the impact of each module in great detail that is responsible for the enhanced performance of our
framework by substituting the modules with well-known algorithms of similar functionality to design
replaced models. We compare the performance of the replaced models with our proposed framework
to support the efficacy of our modules.

Study of HgSL Module:- We study the effectiveness of the HgSL module in modeling the complex
relations among the spatially and semantically dependent visual patches for a structured representation
of electron micrographs. The HgSL module learns the optimal K-uniform bi-directed hypergraph
structure of the electron micrographs through the top-K nearest neighbor search algorithm. The most
popular graph-based approaches for constructing the optimal graph structure are classified into two
categories, (a) constructing a K-regular bi-directed graph or (b) the K-irregular bi-directed graph.
The K-irregular graph construction techniques overcome the limitations of K-uniform graph structure
learning techniques, which are not continuously differentiable. The former algorithmic approach in
the literature includes (a) the top-K nearest neighbor search strategy using cosine similarity(CS,Deng
& Hooi (2021)) and (b) structure learning through implicit correlations of node embeddings(MTGNN,
Wu et al. (2020)). The later algorithmic techniques include (a) parametrization of the adjacency
matrix and sample through the Gumbel reparameterization trick (Jang et al. (2016); Kool et al.
(2019)) to output the link probability between nodes(GPT, Shang et al. (2021)), (b) regularized graph
generation(RGG, Yu et al. (2022)) to learn sparse implicit graph by dropping redundant connections
between nodes, and (c) graph relational learning using the self-attention mechanism(GRL, Zhang
et al.) to construct a graph from observed data. We refer to the Vision-HgNN model for which the
HgSL module is modeled with the different operators as follows,

* w/ CS: Vision-HgNN model with the CS operator.

* w/ MTGNN: Vision-HgNN model with the MTGNN operator.

* w/ GPT: Vision-HgNN model with the GPT operator.

* w/ RGG: Vision-HgNN model with the RGG operator.

» w/ GRL: Vision-HgNN model with the GRL operator.

Table 4 reports the performance of the replaced models compared to the Vision-HgNN framework.
The Top-1 scores of the substituted models, w/ MTGNN, w/ GPT, w/ RGG, w/ GRL declined by
10.74%, 12.94%, 15.63% , 12.69% on SEM dataset compared to the Vision-HgNN model. The
impact of w/ CS is marginal and achieves on-par performance compared to the Vision-HgNN model.
The results show the advantages of utilizing the HgSL. module modeled with the top-K nearest
neighbor search technique, a simple yet effective similarity learning technique based on the Euclidean
distance between patches for capturing the underlying higher-order relational information in visual
hypergraphs.

Algorithms |Top-1 | Top-2 | Top-3 | Top-5 | Avg-Precision | Avg-Recall | Avg-F1 Score

Vision-HgNN | 0.819 | 0.864 | 0.942 | 0.994 0.784 0.718 0.731
w/ CS 0.790 | 0.833 [ 0.909 | 0.959 0.756 0.693 0.706

w/ MTGNN | 0.731 | 0.763 | 0.843 | 0.897 0.699 0.639 0.644
w/ GPT 0.713 | 0.744 [ 0.822 | 0.875 0.682 0.616 0.632
w/RGG | 0.691 | 0.718 | 0.788 | 0.844 0.668 0.621 0.627
w/GRL | 0.715 | 0.749 | 0.826 | 0.862 0.694 0.633 0.645

Table 4: The table reports the comparative study of the various structure learning techniques.

Study of HZAT Module:- (a) We study the importance of the attention mechanism in the hypernode-
level hypergraph encoder(HgAT) to compute the expressive hypernode embeddings(h,,) of visual
hypergraphs. We disable the attention mechanism of the layerwise HgAT operator. We perform
the unweighted sum-pooling operation on the neural messages in the intra- and inter-neighborhood
aggregation scheme for computing hypergraph embeddings. We refer to the Vision-HgNN model
in the absence of the attention-mechanism for determining the hyperedge(h,,,) and hypernode(h,,)
embeddings as follows,
* w/o ap i, Bip: Vision-HgNN model without the attention mechanism.
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Eliminating the attention mechanism degrades the replaced model performance, as evident in Table 5.
In particular, it decreases the Top-1 accuracy w.r.t. the Vision HENN model by more than 13.79%
on the SEM dataset. The attention mechanism automatically learns the relative importance among
the incident hypernodes and hyperedges during the local and global neighborhood aggregation. It
provides beneficial inductive bias to capture the dominant-visual patterns in the electron micrographs
across the categories. The hypergraph attention mechanism models the fine-grained correlations for
encoding the higher-order relationships in the embeddings for better learning the visual hypergraphs.

Algorithms | Top-1 | Top-2 | Top-3 | Top-5 | Avg-Precision | Avg-Recall | Avg-F1 Score
Vision-HgNN | 0.819 | 0.864 | 0.942 | 0.994 0.784 0.718 0.731
w/o ap i, i p | 0.706 | 0.742 1 0.812 | 0.827 0.667 0.619 0.630

Table 5: The table shows the comparative study of the model’s performance with and without the
attention mechanism in HgAT.

(b) We analyze the usefulness of latent master-hypernode to encode the long-range hypernode
relations in the visual hypergraph embeddings for enhancing classification performance. We add
a superhypernode(or virtual master hypernode, Gilmer et al. (2017); Ishiguro et al. (2019); Pham
et al. (2017); Hwang et al. (2021)) for augmenting the visual hypergraphs. The master hypernode had
connected to all hyperedges of the augmented hypergraph. It provides an additional route for neural
message-passing schema on visual hypergraphs. The master hypernode embeddings contain the
global latent information of the visual hypergraphs. Each hyperedge reads and writes to transform the
master hypernode embedding through the intra- and inter-neighborhood aggregation-based message-
passing attention networks. We design a replaced model by disabling the HgT module to operate on
the augmented hypergraphs as follows,

» w/ Virtual: Vision-HgNN model without the HgT module to operate on augmented hyper-
graphs.

The degradation of the variant performance is evident in Table 6, which shows a drop of 11.72% in the
Top-1 accuracy compared to the Vision HgNN model. The latent “master” hypernode is ineffective
for capturing long-range hypernode-to-hypernode relations to encode the spatial dependencies among
patches in the hypergraphs embeddings for effectively learning on the visual hypergraphs-topology
compared to the HgT module.

Algorithms | Top-1 | Top-2 | Top-3 | Top-5 | Avg-Precision | Avg-Recall | Avg-F1 Score
Vision-HgNN | 0.819 | 0.864 | 0.942 | 0.994 0.784 0.718 0.731
w/ Virtual |0.723 | 0.761 | 0.832 | 0.847 0.684 0.634 0.648

Table 6: The table shows the comparative study of the model’s performance with and without the
latent “master” hypernode.

Algorithms Top-1 | Top-2 | Top-3 | Top-5 | Avg-Precision | Avg-Recall | Avg-F1 Score
Vision-HgNN | 0.819 | 0.864 | 0.942 | 0.994 0.784 0.718 0.731
w/ TopK Pooling | 0.695 | 0.731 | 0.803 | 0.814 0.657 0.603 0.620
w/ SAG Pooling | 0.732] 0.770 | 0.843 | 0.866 0.699 0.642 0.656

Table 7: The table shows the comparative study of the model’s performance with different hierarchical
pooling schemes.

(c) We study the effectiveness of hierarchical pooling schemes(Gao & Ji (2019); Lee et al. (2019)) for
better learning the long-range, higher-order dependencies in visual hypergraphs. The spatial pooling
operator learns the hierarchical representations in a two-stage approach to model the large portions in
the visual hypergraphs. (a) assigns a score to all hypernodes and drops the low-scoring hypernodes
and the corresponding hyperedges, which contain noise or less prominent patterns. (b) samples the
high-scoring hypernodes to obtain hierarchical-induced visual subhypergraphs. (c) performs the
hierarchical message passing schemes on pooled hypergraphs for encoding the hypergraph’s local
and global structure information to compute higher-order representations of the visual hypergraphs.
We obtain a replaced model by (a) disabling the HgT module, (b) stacking three layers of pooling
operators(pooling ratio(p,.) as 0.75) interleaved with the HgAT module, and refer to the Vision-HgNN
model as follows,

* w/ TopK Pooling: Vision-HgNN model with the TopK Pooling operator (Gao & Ji (2019)).
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* w/ SAG Pooling: Vision-HgNN model with the SAG Pooling operator(Lee et al. (2019)).
The performance degradation of the replaced models was evident in the SEM dataset, as indicated in
Table 7. The replaced models, w/ TopK Pooling, w/ SAG Pooling yields an overall 15.14%, 10.62%
relative lower Top-1 accuracy compared to the Vision-HgNN model. The self-attention mechanism-
based HgT module is more effective for capturing long-range spatial dependencies by computing all
pairwise interactions among hypernodes through a position-agnostic fashion for learning about visual
hypergraphs.

Study of HgT Module:- Inspired by using a special-classification token(<CLS>) in transformer
architectures (Jiang et al. (2022); Pan et al. (2022); Devlin et al. (2018)) for sentence-level classi-
fication tasks. We will append a special-patch(< CLS >) embedding along with the hypernode’s
embeddings corresponding to the visual hypergraphs as the input set of embeddings sequence to
the HgT module. Note: We do not add the special patch(<CLS >) as a virtual hypernode to the
visual hypergraph. This method overcomes the drawbacks of the information bottleneck problems
of the virtual hypernode augmentation technique. The former algorithm prevents learning pairwise
relationships between hypernodes except with the virtual hypernode. The special-patch incorporated
variant model encodes the one-to-one relations between the <CLS> patch and every other patch of
the visual hypergraphs in the hypergraph embeddings with the self-attention module. We hypothe-
size that the special-patch(<CLS>) embedding contains complete visual hypergraph information.
We apply the softmax operator to special-patch embedding and predict the category of the visual
hypergraphs. Thus, we obtain a replaced model with the special-patch-inspired readout mechanism
coupled with the HgT module as follows,

* w/ <CLS>: The Vision-HgNN model with <CLS> patch in HgT module and disabled

HgRo module.

Algorithms |Top-1|Top-2 | Top-3 | Top-5 | Avg-Precision | Avg-Recall | Avg-F1 Score
Vision-HgNN | 0.819 | 0.864 | 0.942 | 0.994 0.784 0.718 0.731
w/ <CLS> [0.747|0.779 | 0.839 | 0.917 0.707 0.672 0.677

Table 8: The table reports the comparative study of the special-token-based hypergraph readout
mechanism with our proposed method.

The experimental results had illustrated in Table 8. We notice a drop in the variant performance
compared to our proposed method. The Top-1 accuracy of the design variant, w/ <CLS>, declined
by 8.79% on the SEM dataset compared to the Vision-HgNN model.

Algorithms Top-1 | Top-2 | Top-3 | Top-5 | Avg-Precision | Avg-Recall | Avg-F1 Score
Vision-HgNN | 0.819 | 0.864 | 0.942 | 0.994 0.784 0.718 0.731
w/GMT 0.774 | 0.816 | 0.890 | 0.939 0.741 0.679 0.691
w/GA 0.786 | 0.828 | 0.884 | 0.954 0.752 0.703 0.716
w/Set2Set | 0.719 | 0.741 | 0.818 | 0.882 0.698 0.650 0.658
w/GSM 0.737 | 0.753 | 0.841 | 0.909 0.716 0.666 0.675

Table 9: The table reports the comparative study of the hypergraph readout baseline operators.

Study of HgRo Module:- We probe the HgRo module’s effectiveness compared to the well-known
algorithms of identical functionality. The hypergraph readout module performs global average pooling
on the hypernode-level embeddings to compute the visual hypergraph-level embedding. We utilize
well-known methods as baseline operators to perform global-pooling operations on the hypergraphs.
The list includes GraphMultisetTransformer(GMT, Baek et al. (2021)), GlobalAttention(GA, Li
et al. (2015)), Set2Set(Vinyals et al. (2015)), and Global Summation Pooling(GSM). We refer to the
Vision-HgNN model with the baseline operators for modeling the global readout function(HgRo
module) as follows:

* w/ GMT: The Vision-HgNN model with GMT operator.

* w/ GA: The Vision-HgNN model with GA operator.

* w/ Set2Set: The Vision-HgNN model with Set2Set operator.

* w/ GSM: The Vision-HgNN model with GSM operator.
The results reported in Table 9 across all the evaluation metrics demonstrate no significant improve-
ments in the replaced model’s performance compared to our proposed method with the global average
pooling operator. Overall, our hypergraph readout module proves effective by learning to compute

the optimal hypergraph-level representations while maximally preserving the visual hypergraph’s
global-contextual information.
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A.7 HYPERPARAMETER STUDIES

We perform an in-depth hyperparameter tuning to determine the optimal hyperparameters of our
framework. The algorithm hyperparameters are (1) the dimensionality of embedding(d). (2) The
stack of HgAT operators(Lugar) and the HgT operators(Lugr). Hyperparameters had chosen from
the following ranges: embedding dimension(d) € [32,256], Lygar € [1, 8], and Ly,r € [1,6]. We
perform hyperparameter optimization using the grid-search technique to yield the optimal perfor-
mance of our proposed method on the validation dataset in terms of the Top-1 classification accuracy.
For each experiment, we change the hyperparameter under investigation to determine the impact on
the model performance. The optimal hyperparameters determined from the study are as follows, d is
128, LHgAT7 and LHgAT is 2.

dl 32 | 64 | 128 | 256 Lygar| 1 2 4 8 Lyer| 1 2 4 6
0.632|0.740{0.813]0.802 0.71210.813]0.673]0.520 0.75410.813(0.830]0.798

Table 10: The table reports the experimental results of the hyperparameter study.

A.8 SEM DATASET

The SEM dataset contains ten diverse electron micrograph categories of nanomaterials such as
biological, fibers, films, MEMS, patterned surfaces, etc. Table 11 shows the unequal distributions
in the total count of each electron micrograph category. A few illustrative electron micrographs
belonging to the different nanomaterials had shown in Figure 5.

Category Number of images
Biological 973(4.57%)
Tips 1625(7.63%)
Fibres 163(0.76%)
Porous Sponge 182(0.85%)
Films Coated Surface 327(1.53%)
Patterned surface 4756(22.34%)
Nanowires 3821(17.95%)
Particles 3926(18.44%)
MEMS devices and electrodes 4591(21.57%)
Powder 918(4.31%)
Total 21282

Table 11: Summary of SEM dataset: The listing of electron micrographs count per category.

Figure 5: The figure shows the electron micrograph categories in the SEM dataset (Aversa et al.
(2018))(left to right in the first row: biological, fibers, films, MEMS, nanowires; left to right in the
second row: particles, patterned surface, porous sponges, powder, tips).
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A.8.1 BENCHMARKING ON OPEN-SOURCE MATERIAL DATASETS

» NEU-SDD' (Deshpande et al. (2020)) is a hot-rolled steel-strip surface defects database
consisting of 1800 gray-scale electron micrographs with a resolution of 200x200 pixels.
The dataset had categorized into six surface defect classes, where each class has 300 electron
micrographs. The list includes pitted surfaces, scratches, rolled-in scale, crazing, patches,
and inclusion defects. For illustration, each category’s representative electron micrograph
had shown in Figure 6. We compare the performance of our proposed method with several
baseline algorithms on the multiclass classification task.

« CMI? is a benchmark dataset for automating corrosion assessment of materials, which
consists of 600 corroding panel-based electron micrographs of resolution 512x512 pixels.
The human-annotated dataset had manually assigned a rating to each electron micrograph by
the corrosion experts following the ASTM-D1654 standards. The discrete rating variables
range from 5 to 9, where the corrosion rating of 9 implies that the panel is in the initial stage
of corrosion. Each corrosion rating-based panel has 120 electron micrographs, and Figure
7 shows the representative electron micrographs for each corrosion rating. We report the
performance of our proposed method compared to the several baseline algorithms on the
multiclass classification task.

« KTH-TIPS? is a texture database that contains 810 electron micrographs of ten different
materials. The electron micrograph resolution in the dataset is 200200 pixels. In each
material category, the corresponding electron micrographs have varying illumination, pose,
and scale of the material under examination. The ten materials categories are sponge, orange
peel, styrofoam, cotton, cracker, linen, brown bread, sandpaper, crumpled aluminum foil,
and corduroy. A few example electron micrographs per category had shown in Figure 8.
We evaluate and report the performance of our proposed method compared to the several
baseline algorithms on the multiclass classification task.

Table 12 shows the performance comparison of our proposed method w.r.t to the baselines across all
the datasets. The experimental results demonstrate the efficacy of our proposed method.

Algorithms NEU-SDD CMI KTH-TIPS
ResNet 0.906  0.928 0.941
GoogleNet 0936  0.928 0.929
SqueezeNet 0.955 0.943 0.963
VanillaViT 0.962  0.968 0.972
Vision-HGNN | 0975  0.981 0.987

Baselines

Table 12: Performance comparison on the datasets.

Crazing Inclusion Patches Pitted surface

Rolled-in scale Scratches

B 3

Figure 6: The NEU-SDD dataset: We illustrate the electron micrographs of six defect categories of
hot-rolled steel strip 1(Deshpande et al. (2020)).

"Datasource: http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.
html

https://arl.wpi.edu/corrosion_dataset

*https://www.csc.kth.se/cvap/databases/kth-tips/index.html
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5 6 7 8 9

Figure 7: The CMI dataset: The representative electron micrographs of five corrosion rating classes
2.

Aluminium Foil

Brown bread Corduroy Cotton Cracker

Linen Orange peel Sandpaper Sponge Styrofoam

Figure 8: The KTH-TIPS dataset: Illustration of electron micrographs belonging to ten different
materials 3.
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