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ABSTRACT

Forecasting the behavior of complex dynamical systems such as interconnected
sensor networks characterized by high-dimensional multivariate time series(MTS)
is of paramount importance for making informed decisions and planning for the
future in a broad spectrum of applications. Graph forecasting networks(GFNs) are
well-suited for forecasting MTS data that exhibit spatio-temporal dependencies.
However, most prior works of GFN-based methods on MTS forecasting rely on
domain expertise to model the nonlinear dynamics of the system but neglect the
potential to leverage the inherent relational-structural dependencies among time
series variables underlying MTS data. On the other hand, contemporary works
attempt to infer the relational structure of the complex dependencies between the
variables and simultaneously learn the nonlinear dynamics of the interconnected
system but neglect the possibility of incorporating domain-specific prior knowl-
edge to improve forecast accuracy. To this end, we propose a novel hybrid ar-
chitecture that combines explicit prior knowledge with implicit knowledge of the
relational structure within the MTS data. It jointly learns intra-series temporal
dependencies and inter-series spatial dependencies by encoding time-conditioned
structural spatio-temporal inductive biases to provide more accurate and reliable
forecasts. It also models the time-varying uncertainty of the multi-horizon fore-
casts to support decision-making by providing estimates of prediction uncertainty.
In doing so, the proposed scalable framework and utilizing a cost-effective GPU
hardware to improve the training efficiency have shown promising results on mul-
tiple large-scale spatio-temporal graphs datasets. It outperforms state-of-the-art
forecasting methods by a significant margin. We report and discuss the ablation
studies to validate our forecasting architecture.

1 INTRODUCTION

Accurate multivariate time series forecasting(MTSF) is critical for a broad spectrum of domains that
have significant financial or operational impacts, including retail and finance, intelligent transporta-
tion systems, logistics and supply chain management, and many others. However, MTSF can be
challenging due to the complexity of the relationships between time series variables and the unique
characteristics of the MTS data, such as non-linearity, heterogeneity, sparsity, and non-stationarity.
In this context, Spatial-temporal graph neural networks(STGNNs) have been widely studied for
modeling the long-range intra-temporal dependencies and complex inter-dependencies among the
variables in the MTS data for improved multi-horizon forecast accuracy. The explicit relationships
among variables are based on prior knowledge provided by human experts in the form of a pre-
defined or explicit graph, while implicit relationships among variables within the MTS data are
obtained through neural relational inference methods(Deng & Hooi (2021); Kipf et al. (2018)). The
implicit relationships are highly-complex and non-linear, can change over time, and uncover hidden
relationships unknown to human experts which are not obvious. The existing “human-in-the-loop”
STGNNs(Yu et al. (2017), Li et al. (2017), Guo et al. (2020)) incorporate domain-specific knowl-
edge of the relational-structural dependencies among the interdependent variables while simultane-
ously learning the dynamics from the MTS data. However, arguably, the explicit graph structures
in most real-world scenarios are either unknown, inaccurate, or partially available, thus resulting
in suboptimal forecasting. Even if available, the explicit graph structure represents a simplified
view of dependencies and often fails to capture the non-static spatial-temporal dependencies within
the MTS data. Precisely it falls short of accurately inferring the latent time-conditioned underly-
ing relations that drive the co-movements among variables in the substantial MTS data. On the
contrary, a recent class of STGNNs(Shang et al. (2021); Deng & Hooi (2021); Wu et al. (2020);
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Kipf et al. (2018)) jointly infer the discrete dependency graph structure describing the implicit re-
lations between variables while simultaneously learning the dynamics in MTS data. Despite the
success, these approaches neglect to exploit the predefined graph of the inter-relationships among
variables obtained from the domain-expertise knowledge resulting in suboptimal performance on
the graph time-series forecasting. In addition, implicit graph structure learning from MTS data
suffers from inherent limitations of pairwise associations. While in contrast, the relations within
the complex dynamical systems of interconnected networks could go beyond pairwise connections.
Hypergraph, a generalization of a graph, offers a natural fit for modeling the higher-order structural
relations underlying the interconnected networks in complex high-dimensional data. Moreover, the
standard STGNNSs focus on learning pointwise forecasts but do not provide uncertainty estimates
of forecasts. To overcome the challenges, we propose an explicit-implicit knowledge fusion neu-
ral network(EIKF-Net) framework with a joint learning paradigm on the explicit-implicit interaction
structure for a thorough understanding of the underlying dependencies between time series variables,
while simultaneously learning the complex dynamics of the MTS data for better forecast accuracy
and to provide reliable uncertainty estimates of forecasts. The proposed framework consists of two
main components: spatial and temporal learning components. We adopt a space-then-time(STT,
Gao & Ribeiro (2022)) approach, where spatial message-passing schemes are performed prior to
the temporal-encoding step. The spatial learning component is further composed of an implicit
hypergraph and explicit graph learning modules. The former infers the implicit hypergraph struc-
ture, which captures the hierarchical interdependencies among variables in MTS data. Simultane-
ously it performs hypergraph representation learning schemes to encode the spatio-temporal dynam-
ics underlying the hypergraph-structured MTS data into the latent hypernode-level representations.
The latter performs the graph representation learning schemes to encode the pair-wise spatial rela-
tions between the multiple co-evolving variables to capture the spatio-temporal dynamics within the
graph-structured MTS data into the latent node-level representations. We perform convex combina-
tion(i.e., “mix up”) of the latent graph and hypergraph representations through a gating mechanism.
It leads to more accurate latent representations of the complex non-linear dynamics of the MTS data.
The mixup representations allow the framework to capture different types of dependencies that ex-
ist at different observation scales(i.e., correlations among variables could potentially differ in the
short and long-term views in the MTS data). The temporal learning component focusses on learning
the time-evolving dynamics of interdependencies among the variables present in the MTS data to
provide accurate multi-horizon forecasts with predictive uncertainty estimates. To summarize, our
work presents an end-to-end methodological framework to infer the implicit interaction structure
from MTS data. It simultaneously learns the spatio-temporal dynamics within the explicit graph and
implicit hypergraph structured MTS data using graph and hypergraph neural networks, respectively,
to capture the evolutionary and multi-scale interactions among the variables in the latent repre-
sentations. It performs inference over these latent representations for downstream MTSF task and
models the time-varying uncertainty of the forecasts in order to provide more accurate risk assess-
ment and better decision making by estimating predictive uncertainty. The framework is designed to
offer better generalization and scalability with reduced computational requirements for large-scale
spatio-temporal MTS data-based forecasting tasks as those found in real-world applications.

2 PROBLEM DEFINITION

Lets us assume a historical time series data, with n-correlated variables, observed over T training
steps is represented by X=(x,...,xr), where the subscript refers to time step. The observations
of the n-variables at time point t are denoted by x,=(x\",x{*, ..., x{"™)eR(™, where the super-
script refers to variables. Under the rolling-window method for multi-step forecasting, where at the
current time step ¢, we predefine a fixed-length look-back window to include the prior 7-steps of
historical MTS data to predict for the next v-steps. In the context of MTSEF, the learning problem
can be formalized using the rolling window method. The goal is to use a historical window of n-
correlated variables, represented by the X,_,. ,_1)€R"*7, which have been observed over previous
T-steps prior to current time step ¢, to predict about the future values of n variables for the next
v-steps denoted as X y.14,—1)€ER™™V. The MTSF problem is further formulated on the graph and
hypergraph structure to capture the spatial-temporal correlations among multitudinous correlated
time series variables. We represent the historical inputs as continuous-time spatial-temporal graphs,
denoted as G;=(V, &, X 4. ¢—1), A((’)). G, is composed of a set of nodes(V), edges(€) that describe the
connections among the variables and node feature matrix X(;_. ;1) that changes over time, where ¢
is the current time step. The adjacency matrix, A(¥e{0,1}/VI*IVI, describes the explicit fixed-graph
structure based on prior knowledge of time-series relationships. In addition, we treat historical MTS
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data as a sequence of dynamic hypergraphs, denoted as HG,=(HV, HE, X ¢_-. +—1),1). The hypergraph
is represented by a fixed set of hypernodes(#V) and hyperedges(#E), where time series variables
denote the hypernodes and hyperedges capture the latent higher-order relationships between hyper-
nodes. The time-varying hypernode feature matrix is given by X,_,.,_1). The implicit hypergraph
structure is learned through an embedding-based similarity metric learning approach. The incidence
matrix, IER™*™, describes the hypergraph structure, where I, ,=1 if the hyperedge ¢ incident with
hypernode p and otherwise 0. The number of hyperedges(m) in a hypergraph determines the sparsity
of the hypergraph. Given a G; and HG,, the novel framework is designed to learn a function F(6)
that maps historical MTS data, X(;_. ;_1), to their respective future values, X;.,1,_1) values defined

F(o
as follows, (X(or), aX(t—l)Qgta/Hgt]Lg[X(zﬁl):"' X (tv-1)] (D
Simply, the MTSF task formulated on the explicit graph(G;) and implicit hypergraph(#g,) is de-
scribed as follows: Inein£<X(t:t+v—1)» X(t:t+v_1>; X(t—r: t—1): G, HGy) ?2)

where 6 denotes all the learnable parameters for trainable function F'(6). X(t:m,,l) denotes the
model predictions, £ is the loss function. The loss function to train our learning algorithm is mean

absolute error(MAE) loss. 1 5
['MAE (9)25 ‘X(t:t+v—l) - X(t:t—&-v—l)‘ 3
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Figure 1: Overview of EIKF-Net framework
3 OUR APPROACH

The overall neural forecasting architecture of our framework is illustrated in Figure 1. It consists of
three main components: The projection layer, spatial learning, and temporal learning components.
The spatial learning component includes two modules: graph and hypergraph learning modules.
The hypergraph learning module infers the discrete dependency hypergraph structure to capture the
interrelations between time-series variables. It also performs higher-order message-passing schemes
to learn the time-conditioned optimal hypernode-level representations by modeling the hypergraph-
structured MTS data. The graph learning module utilizes the predefined graph, which represents
the relational structure of the variables obtained from domain-expertise knowledge to obtain the
graph-structured MTS data. It performs spatial graph-filtering through neighborhood aggregation
schemes to compute the optimal node-level representations that better capture the underlying dy-
namics within the MTS data. The temporal inference component performs a convex combination of
the latent explicit-graph and implicit-hypergraph representations and learns the time-evolving inter-
dependencies to provide pointwise forecasts and uncertainty estimations. Overall, joint optimization
of different learning components of the proposed framework effectively captures the complex rela-
tionships between time-series variables and makes accurate forecasts.
3.1 PROJECTION LAYER
The projection layer utilizes a gated linear networks(GLN, Dauphin et al. (2017)) to learn the non-
linear representations of the input data, X,_.. ,—1)€R"*" through a gating mechanism to compute a
transformed feature matrix, X_,. ;_1)€R"*¢ as follows,

Xtmr: -1y =(0(WoX—r: 1-1)) @ W1X(_r, 1-1)) W2
where Wy, W1, Wo€R™*¢ are trainable weight matrices, ® denotes the element-wise multiplication.
o is the non-linear activation function.
3.2 SPATIAL-INFERENCE
The spatial inference component of our framework is illustrated in Figure 2. The spatial-learning
component encodes non-linear input data, X,_..,_, to obtain graph and hypergraph representations
using two modules: the hypergraph learning module and the graph learning module. The hypergraph
learning module performs joint hypergraph inference and representation learning, while the graph
learning module performs graph representation learning. The outputs of these two modules are fused
using a convex combination approach to regulate the flow of information encoded by each module.
The details of each module are discussed in subsequent sections.

3.2.1 HYPERGRAPH INFERENCE AND REPRESENTATION LEARNING

The hypergraph learning module is composed of two units: the hypergraph inference(HgI) unit and
the hypergraph representation learning(HgRL) unit. The Hgl unit is a structural modeling approach
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that aims to infer the discrete hypergraph topology capturing the hierarchical interdependence rela-
tions among time-series variables for a hypergraph-structured representation of the MTS data. We
described Hgl unit in the technical appendix in great detail. The downstream forecasting task acts as
the indirect supervisory information for revealing the high-order structure,i.e., the hypergraph rela-
tion structure behind the observed data. The MTS data is represented as hypernode-attributed spatio-
temporal hypergraphs. A hypergraph representation learning unit(HgRL) is used to compute optimal
hypernode-level representations by capturing the spatio-temporal dynamics within the hypergraph-
structured MTS data. These representations are then used to perform inference on the downstream
multi-horizon forecasting task. In short, HgRL is a neural network architecture that utilizes both Hy-
pergraph Attention Network(HgAT) and Hypergraph Transformer(HgT) as its backbone. The HgT

uses multi-head self-attention mechanisms to learn the latent hypergraph representations, hg(t), at
time ¢ without leveraging any prior knowledge about the structure of the hypergraph. The HgAT
performs higher-order message-passing schemes on the hypergraph to aggregate information and

compute the latent hypernode representations, hgt), at time t. The HgAT and HgT form a pow-
erful backbone for HgRL, allowing it to effectively learn hypergraph representations by capturing
complex relationships and dependencies within the hypergraph-structured MTS data. We provide
the implementation details and a more in-depth explanation in the appendix for further information.

We regulate the information flow from h;(t) and h,Et) by applying a gating mechanism to produce a
weighted combination of representations as described below,
by =0 (g'(0")) + (1 = g)(B")): 9= (L0 ") + 5 (b)) )

where f! and f; are linear projections. Fusing representations can be beneficial for modeling the
multi-scale interactions underlying the spatio-temporal hypergraph data and also help to mitigate
overfitting. The spatio-temporal data often contains correlations between variables that change over
time or at different observation scales. By fusing representations, the proposed framework incor-
porates the most relevant information to capture the time-evolving underlying patterns in the MTS
data, which leads to more accurate and robust forecasts. In brief, the hypergraph learning mod-
ule optimizes the discrete hypergraph structure through the similarity metric learning technique. It
formulates the posterior forecasting task as message-passing schemes with hypergraph neural net-
works to learn the optimal hypergraph representations, which leads to more accurate and expressive
representations of the MTS data for better forecast accuracy.

3.2.2 GRAPH REPRESENTATION LEARNING(GRL)

We represent the MTS data as continuous-time spatio-temporal graphs based on predefined graphs
obtained from domain-specific knowledge. We utilize the Temporal Graph Convolution Neural
Network(T-GCN, Zhao et al. (2019)) to compute optimal node-level representations by modeling
the graph topology dependencies and feature attributes within the graph-structured MTS data. These
graph representations are further processed by the downstream temporal inference component for
learning the non-linear temporal dynamics of inter-series correlations among the variables. In short,
the T-GCN performs neighborhood aggregation schemes on predefined graph topology to compute
the optimal node-level representations, hg”“), at a specific time ¢. It effectively captures fine-grained,
data-source specific patterns accurately. We discuss in the appendix a more detailed description of

the technique.
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Figure 2: Overview of spatial inference component.
3.3 TEMPORAL-INFERENCE
The mixture-of-experts(MOE) mechanism combines the predictions of multiple subnetworks (ex-
perts) to produce a final prediction. In this specific framework, the experts are graph and hypergraph
learning modules. The expert predictions are combined through a gating mechanism in an input-
dependent manner by calculating a weighted sum of their predictions. The goal of training in this
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framework is to achieve two objectives: 1) Identifying the optimal distribution of weights for the gat-
ing function that precisely captures the underlying distribution within the MTS data, and 2) Training
the experts using the distribution weights specified by the gating function. The fused representations
are obtained by combining the predictions of the experts using the calculated weights as follows,
by =0 (" (0{") + (1 = ") (0" ")): " =0 (£ (0] + £y (")) )

where h;’(”, h;/'“) are computed by the graph and hypergraph learning modules, respectively. f7 and
fy are linear projections. The temporal inference component consists of a stack of 1 x 1 convolu-
tions. The fused representations are fed as input to the temporal inference component. This compo-
nent aims to model the non-linear temporal dynamics of inter-series dependencies among variables
underlying the spatial-temporal MTS data and predicts the pointwise forecasts, X ;.;1,_1). Our pro-
posed framework uses the spatial-then-time modeling approach to learn the higher-order structure
representation and dynamics in MTS data. This approach first encodes the spatial information of the
relational structure, including both explicit graph and implicit hypergraph, which captures the com-
plex spatial dependencies. By incorporating the temporal learning component, the framework then
analyzes the evolution of these dependencies over time, which helps to improve the interpretability
and generalization of the framework. This approach is beneficial for dealing with real-world appli-
cations that involve entangled complex spatial-temporal dependencies within the MTS data, which
can be challenging to model using traditional methods. Additionally, by minimizing the negative
Gaussian log likelihood, the uncertainty estimates of forecasts can be provided through the w/Unc-
EIKF-Net framework(i.e., EIKF-Net with Local Uncertainty Estimation). Minimizing the nega-
tive Gaussian log likelihood is equivalent to maximizing the likelihood of the model’s predictions
given the true values. This allows the framework to provide more accurate and reliable uncertainty
estimates of forecasts. In summary, our proposed methods(EIKF-Net, w/Unc- EIKF-Net) allow
for simultaneously modeling the latent interdependencies and then analyze the evolution of these
dependencies over time in the sensor network based dynamical systems in an end-to-end manner.

4 EXPERIMENTAL RESULTS

We conduct experiments to verify the performance of proposed models(EIKF-Net, w/Unc- EIKF-
Net) on large-scale spatial-temporal datasets. Additional details about the benchmark datasets
are described in the appendix. Table 1 presents a comparison of the forecast errors of proposed
models(EIKF-Net and w/Unc- EIKF-Net) with those of several baseline models on five differ-
ent datasets(PeMSD3, PeMSD4, PeMSD7, PeMSD7M, and PeMSDS8). The forecast errors are
evaluated for a 12(7)-step-prior to 12(v)-step-ahead forecasting task which is a popular and well-
established benchmark in the MTSF task. The performance of the proposed models was evaluated
using multiple metrics such as mean absolute error(MAE), root mean squared error(RMSE), and
mean absolute percentage error(MAPE). Using multiple evaluation metrics in multi-horizon predic-
tion tasks provides a comprehensive evaluation of the proposed models performance with the base-
lines. The results for the baseline models were reported in a previous study by Choi et al. (2022).
The proposed models(EIKF-Net, w/Unc- EIKF-Net) consistently demonstrate state-of-the-art per-
formance compared to baseline models on various benchmark datasets based on multiple evaluation
metrics. The results show that the proposed models demonstrate the best performance with lower
forecast error on benchmark datasets. Specifically, they report a 12.2%, 14.8%, 8.8%, 10.6% and
8.9% significant drop in the RMSE metric compared to the next-best baseline models on PeMSD3,
PeMSD4, PeMSD7, PeMSDS8, and PeMSD7(M) datasets, respectively. In addition to the pointwise
forecasts, the w/Unc- EIKF-Net model(i.e., EIKF-Net with local uncertainty estimation) provides
time-varying uncertainty estimates. Its performance is slightly worse than the EIKF-Net model but
still outperforms several strong baselines in the literature, as reflected in the lower prediction error.
In brief, the empirical results show the efficacy of the proposed neural forecasting architecture in
modeling the complex and nonlinear spatio-temporal dynamics underlying the MTS data to provide
better forecasts. The appendix provides more detailed information on the experimental setup, ab-
lation studies, and other additional experimental results on multi-horizon forecasting. Moreover,
the appendix discusses the experimental results that support the EIKF-Net framework’s ability to
handle missing data and provide more insights into the w/Unc- EIKF-Net framework for estimating
uncertainty. Furthermore, the appendix also includes time series visualizations of model predictions
with the uncertainty estimates compared to the ground truth. Additionally, the appendix provides
more information on the existing works and a short description of baseline models.

5 CONCLUSION

We propose a framework that combines implicit and explicit knowledge for learning the dynamics
of MTS data to provide accurate multi-horizon forecasts. The experimental results on real-world
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datasets demonstrate the effectiveness of the proposed framework and have shown improved fore-
cast estimates and reliable uncertainty estimations. By reducing the computational requirements,
the framework makes it possible to handle larger datasets and improve the forecast accuracy. Uti-
lizing cost-effective GPU hardware helps to speed up the training process and reduce the memory
requirements, making the framework more practical to use in real-world scenarios. For future work,
we would endeavor to generalize the framework to handle much larger scale graph datasets for
forecasting, synthetic-private data generation, missing-data imputation etc.

Methods PeMSD3 PeMSD4 PeMSD7 PeMSD8 PeMSD7(M)
MAE RMSE MAPE |MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
HA 31.58 5239 33.78 |38.03 59.24 27.88 |45.12 65.64 24.51 |34.86 59.24 27.88 | 459 8.63 1435
ARIMA 3541 4759 3378 |33.73 48.80 24.18 |38.17 59.27 19.46 |31.09 4432 2273 | 7.27 1320 1538
VAR 23.65 3826 24.51 |24.54 38.61 17.24 |50.22 75.63 32.22 |19.19 29.81 13.10 | 425 7.61 10.28
FC-LSTM 21.33 35.11 23.33 |26.77 40.65 18.23 |29.98 4594 13.20 |23.09 35.17 1499 | 416 7.51 10.10
TCN 19.32 33.55 19.93 (2322 37.26 15.59 |32.72 4223 14.26 |22.72 35.79 14.03 | 436 7.20 9.71
TCN(w/o causal) |18.87 32.24 18.63 [22.81 36.87 14.31 |30.53 41.02 13.88 |21.42 34.03 13.09 | 443 7.53 9.44
GRU-ED 19.12 3285 19.31 |23.68 39.27 16.44 |27.66 4349 12.20 {22.00 36.22 13.33 | 478 9.05 12.66
DSANet 21.29 3455 2321 |22.79 3577 16.03 |31.36 49.11 1443 |17.14 2696 11.32 |3.52 698 8.78
STGCN 17.55 30.42 17.34 |21.16 34.89 13.83 |25.33 39.34 11.21 {17.50 27.09 11.29 | 3.86 6.79 10.06
DCRNN 17.99 3031 18.34 |21.22 3344 14.17 |25.22 38.61 11.82 [16.82 26.36 1092 |3.83 7.18 9.81
GraphWaveNet |19.12 32.77 18.89 (24.89 39.66 17.29 |26.39 41.50 11.97 |18.28 30.05 12.15|3.19 6.24 8.02
ASTGCN(r) 17.34 29.56 17.21 |22.93 35.22 16.56 |24.01 37.87 10.73 [18.25 28.06 11.64 | 3.14 6.18 8.12
MSTGCN 19.54 31.93 23.86 |23.96 37.21 14.33 |29.00 43.73 14.30 [19.00 29.15 12.38 | 3.54 6.14 9.00
STG2Seq 19.03 29.83 21.55 |25.20 38.48 18.77 |32.77 47.16 20.16 |20.17 30.71 17.32 | 3.48 6.51 895
LSGCN 17.94 29.85 1698 |21.53 33.86 13.18 |27.31 41.46 1198 [17.73 26.76 11.20 | 3.05 598 7.62
STSGCN 17.48 29.21 16.78 |21.19 33.65 13.90 |24.26 39.03 10.21 |17.13 26.80 10.96 | 3.01 593 7.55
AGCRN 1598 2825 1523 |19.83 32.26 1297 |22.37 36.55 9.12 |1595 2522 10.09 | 279 554 7.02
STFGNN 16.77 28.34 16.30 |20.48 32.51 16.77 |23.46 36.60 9.21 |16.94 26.25 10.60 | 2.90 5.79 7.23
STGODE 16.50 27.84 16.69 |20.84 32.82 13.77 |22.59 37.54 10.14 |16.81 2597 10.62 | 297 5.66 7.36
Z-GCNETs 16.64 28.15 1639 |19.50 31.61 12.78 |21.77 35.17 9.25 |15.76 25.11 10.01 | 2.75 5.62 6.89
STG-NCDE 15.57 27.09 15.06 [19.21 31.09 12.76 |20.53 33.84 8.80 |[1545 2481 992 |2.68 539 6.76
EIKF-Net 13.67 20.17 10.83 {18.36 26.48 10.05 19.86 30.85 8.59 (14.93 22.17 7.83 | 244 491 6.03
w/Unc- EIKF-Net| 13.97 20.59 11.04 |18.73 27.18 10.26 | - - - 15.12 2284 8.19 | 254 509 6.24

Table 1: Pointwise forecast and predictive uncertainty errors on benchmark datasets at horizon@ 12.
“-” indicates an OOM(Out Of Memory) error.
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