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ABSTRACT

With growing machine learning (ML) applications in healthcare, there have been
calls for fairness in ML to understand and mitigate ethical concerns these systems
may pose. Fairness has implications for global health in Africa, which already has
inequitable power imbalances between the Global North and South. This paper
seeks to explore fairness for global health, with Africa as a case study. We propose
fairness attributes for consideration in the African context and delineate where
they may come into play in different ML-enabled medical modalities. This work
serves as a basis and call for action for furthering research into fairness in global
health.

1 INTRODUCTION

Machine learning (ML) models have the potential for far reaching impact in health. However they
also have the potential to propagate biases that reflect real-world historical and current inequities
and could lead to unintended, harmful outcomes, particularly for vulnerable populations (Huang
& Vaidyanathan, 2022; Siala & Wang, 2022; Chen & Ghassemi, 2021; Char & Magnus, 2018;
Gianfrancesco & Schmajuk, 2018; Obermeyer & Mullainathan, 2019). This has led to the institution
of the algorithmic fairness field - various attempts to correct machine learning biases.

Fairness is especially important for global health, which has traditionally been plagued with in-
equitable power imbalances between high-income countries (HICs) and low- and middle-income
countries (LMICs). The recent decolonizing global health movement sheds light on “how knowl-
edge generated from HICs define practices and informs thinking to the detriment of knowledge
systems in LMICs”(Eichbaum & van Schalkwyk., 2021). Eichbaum & van Schalkwyk. (2021) ex-
plore intersections between colonialism, medicine and global health, and how colonialism continues
to impact global health programs and partnerships. They make the point that even the use of the
term “Global health” to describe health in LMICs is problematic. Given that most machine learn-
ing models are developed with problem formulation, personnel, resources and data from HICs, and
may be imported with little regulation to LMICs, there is a risk for algorithmic colonialism (Birhane,
2020; Mohamed & Isaac, 2020), which would further exacerbate current power imbalances in global
health.

To date, fairness in health research has furthered understanding and mitigation of biases along the
machine learning development pipeline (Chen & Ghassemi, 2021; Char & Magnus, 2018; Siala
& Wang, 2022). However most are contextualized to HICs with few studies that have explored
contextualizing fairness beyond the west (Sambasivan & Prabhakaran, 2021; Fletcher & Olubeko,
2021; Bhatt & Prabhakaran, 2022).

This paper builds on previous work as follows: (1) We identify fairness attributes that should be
considered with respect to health in Africa, (2) We delineate contextual barriers by health modality
and (3) We discuss implications for machine learning applications and areas for further research.

We acknowledge that Africa is extremely diverse genetically and culturally. Within the continent
there are attributes that may apply to some countries and not to others. While there is not a one-size
fits all approach, we hope that this serves as a starting point for further research.
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2 FAIRNESS CONSIDERATIONS

In this section we discuss axes of disparities for fairness between Africa and non-African countries,
and considerations for fairness attributes in the context of Africa. Individuals may have multiple
axes of disparities. We define key terms in Appendix A.

2.1 AFRICA-SPECIFIC AXES OF DISPARITIES

Colonial history: All countries in Africa with the exception of Ethiopia and Liberia were colonized
by Europeans. There is strong evidence that Africa’s colonial history, and resulting structural chal-
lenges continue to create power imbalance between the colonized and colonial rulers and beneficia-
ries (Eichbaum & van Schalkwyk., 2021). Colonial history, has been put forward by several schol-
ars as a social determinant of health (Turshen, 1977; Ramos & Rodrı́guez-Dı́az, 2022; Czyzewski,
2011). We propose colonial history as a fairness attribute that should be considered throughout the
ML pipeline - problem formulation, data collection, model development and deployment.

National income level (NIL): Colonialism and its resulting structural issues link to national in-
come level. The number of African countries by NIL are Low-income: 24, lower-middle income:17
upper-middle income: 6, and high-income:1 (Nada, 2022). Socio-economic disparities resulting
from the disproportionately high number of LMICs on the continent imply limited funding from
governments for research in ML for health, and limited availability of clinical data generating de-
vices and resources for ML development (Nabyonga-Orem & Makanga, 2021).

Country of origin: Africa is divided into 5 distinct sub regions: North Africa, West Africa, Central
Africa, East Africa and South Africa. Countries in these regions have different NIL levels, colonial
histories, languages, cultures, ethnicity and racial subgroups. Country lines are colonial constructs,
partitions resulting from the scramble for Africa, with the exception of Ethiopia and Liberia. This
has implications for ethnicity, resources and development (Michalopoulos & Papaioannou, 2016).
Different countries may have varying methods of implementing health strategies. Hence machine
learning applications that work in one country, may not necessarily transfer to the other.

2.2 GLOBAL AXES OF DISPARITIES IN THE CONTEXT OF AFRICA

Race: Majority of Africans are racially black and are subjugated to global anti-black rhetorics
(Pierre, 2013). North African Arabs are externally racially white, as are Afrikaans in South Africa.
There are also people of Asian origin, predominantly in the east and southern Africa. However most
Africans do not self-identify by race and are more likely to identify by nationality and ethnicity
(Asante, 2012; Maghbouleh & Flores, 2022). Demographic health questionnaires do not typically
ask for “race”, though persons of African descent may be at higher risk for certain diseases. One
may consider racial disparities that impact Africans on a global scale, or within different countries
in Africa for example, between Black and White North Africans (Pierre, 2013), or between Black
and White South Africans (Verwey & Quayle, 2012). This has implications for socio-economic
disparities in health access, sampling bias and for race-based disparities in ML model performance.

Ethnicity: Africa has over 3000 ethnic groups and is the most genetically diverse continent. Unlike
in HICs, most Africans associate with an ethnic group. Ethnicity, in addition to physical traits,
language and culture, defines history, aspirations and world view (Deng, 1997). Socio-economic
disparities and approaches to accessing health may run along ethnic lines (Franck & Rainer, 2012).
This has implications that may skew ML applications towards dominant ethnic groups resulting in
ethnic inequities.

Religion: Africans practiced traditional religions pre-colonialism. With the introduction of Western
religion, Christianity and Islam have grown to become dominant regions on the continent. Some
countries are majority Christian with minority Muslim and traditionalists and vice versa. Religion
can be associated with ethnicity and socio-economic status, leading to “ethno-religious disparities”
in health (Gyimah & Addai; Ha & Kanjala). Religion, can also impact access, perceptions and
adoption of health practices (White, 2015; Schmid, 2008; Obasohan, 2014).

Language: There are over 2000 languages in Africa, and most Africans speak more than one (Heine,
2000). Oral language in Africa typically has the format of a dominant colonial or ethnic language
such as English, French, Arabic or Portuguese. There is usually a dominant native language, and
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several local dialects of less dominance. These dominant languages, particularly colonial languages,
facilitate cross-ethnic interaction are typically both written and oral and are utilized in education and
professional life (Obondo, 2007) . There exist oral and written language barriers for people who
speak less known known dialects and for those with lower education and literacy levels, which can
impact communication for health delivery (Levin, 2006).

Skin tone: On a global scale, African skin tones, light or dark are associated with blackness and
instigate anti-blackness discrimination (Pierre, 2013). Among black Africans, lighter skin tone may
be perceived as enabling better social status and favors (Nyoni-Kachambwa & der Putten). As
a result 40% of people on the continent, practice cosmetic skin bleaching (Asumah & Donkor)
Bleaching in itself is a public health concern, increasing risk for severe health problems (Lewis &
Williams). Within ML for health this has implications for practitioner attitudes, dermatology, such
as skin disease detection, and measurement bias from devices that perform poorly on darker skin.

Gender: Historically patriarchal African culture, reinforced by colonial legacies, has led to in-
equitable distribution of wealth between genders (Jaiyeola, 2020). Female household + child car-
ing duties, and professional duties more recently further burdens and reduce access to basic health
amenities for African women (Anaman-Torgbor & Ofori, 2020). Transgender and gender non-
conforming persons in Africa are stigmatized and discriminated against, with few health programs
catering for transgender persons (Luvuno & Mchunu, 2017). This also has implications for health
access, and treatment especially for high sexually transmitted diseases (van der Merwe & Skinner,
2022).

Sexual orientation: Thirty-two countries criminalize homosexuality and it is punishable by death
in 3 countries (Lars, 2022). Homosexual persons are stigmatized and discriminated against which
causes exclusion and marginalization within health systems (Sekoni & Gale, 2022; Ross & Venki-
tachalam, 2021).

Literacy and Education level: Literacy and education levels impact access to care, health seeking
behaviors and understanding of health information, especially when delivered digitally (Amoah &
Phillips, 2018). This has implications not only for one’s own health, but also for the health of their
children (Byaro & Mpeta, 2021).

Age: Age is a global fairness attribute used both in machine learning model development and evalu-
ations for health, due to age-specific incidence rates and co-morbidity. It is essential to demonstrate
equitable ML model performance across age groups (Mhasawade & Chunara, 2021).

Rural-urban divide: People living in rural areas may have disproportionate levels of lower socio-
economic status, literacy, education and limited access to health facilities. This makes people in
rural areas most vulnerable to unethical machine learning practices. However we must ensure just,
beneficial ML applications that benefit rural regions, and improve health gaps.

Socio-economic status: Individual socio-economic disparities underlie most of the above axes of
disparities mentioned. Africa has the second highest wealth distribution gaps(Seery & Lawson).
This runs the risk of machine learning models in health perpetuating unfairness in deployment access
or inaccuracies from unfair variables towards poorer persons.

Disability: Ten to 20% of African populations are affected by disabilities. Disabilities can exacer-
bate most of the attributes listed due to stigma and inadequate resources and policies at the country
level (Adugna & Ghahari, 2020; McKinney & Swartz, 2021).

Health-specific attributes: Differences in genetic and phenotypic distributions in the population
may limit model performance. Underlying pre-existing conditions, and later stages of disease pre-
sentation may also impact distribution shift and model performance. may also impact model perfor-
mance and measurement biases.

3 CONTEXTUAL BARRIERS BY HEALTH MODALITY

Radiology: Machine learning has shown the most promise for use in radiology tasks such as mam-
mography, ultrasound, CT, MRIs and X-rays. However radiology imaging devices are limited in
hospitals in Africa, due to their high cost, and maintenance. Even when radiology imaging devices
are available, they may be of varying quality, which leads to poor generalization of ML models
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from HICs. Additionally radiology images may not be digitally stored or connected to other patient
health records. This can lead to limited data for retraining models and can generate biases and model
errors.

Visible light imaging: Visible light imaging, like radiology, impacts several areas of health: mi-
croscopy, endoscopy, medical photography for dentistry, dermatology, gynecology and others. Ar-
eas of unfairness can arise from differences in types of conditions, and in presentation of conditions.
For instance ML-enabled dermatology diagnosis, may have been trained on lighter skin and may
not work on presentations of the same disease on dark skin. Additionally there may be different
distributions of types of diseases that may not be accounted for in models trained with data from
outside the continent.

Survey data: Demographic and health survey data present some of the largest, readily available
longitudinal sources of health data from the continent. These surveys are used to provide data on
disease trends over time by different regions, and demographics. While they allow data represen-
tation from African of different backgrounds, when using them for ML model development, care
must be taken to ensure that models do not rely on proxy or sensitive attributes that could lead to
unfairness towards certain demographic groups.

Unstructured written health notes: Machine learning for unstructured health notes utilizes natural
language processing models pre-trained on large amounts of text to extract information such as
symptoms and action items, and provide disease classifications. However NLP models, pre-trained
on large amounts of data already exhibit cultural, gender, and racial biases. Using them without
proper evaluation and finetuning may propagate these biases.

Medical speech: Automatic speech recognition systems are used in various heath facilities by
healthcare professionals to dictate notes without having to take time away from patient care. Ac-
cent, style of speaking (for instance pidgin) and literacy may impact speech recognition algorithms
designed to be used in Africa.

Optical sensor devices Optical sensor-based such as pulse oximeters and fitness trackers have been
shown to have lower performance on darker skinned persons (Shi C, 2022). Machine learning mod-
els developed for these devices may perpetuate measurement bias.

Facial recognition Facial recognition algorithms have shown use in health to diagnose medical
conditions such as autism (Liu & Yi, 2016). However these algorithms have also been shown to
have high performance bias by skin tone and gender (Buolamwini & Gebru, 2018).

Health recommenders A health recommendation system can analyze the status of a patients health
to recommend personalized diets, exercise routines, medications, disease diagnoses, or other health-
care services. These may however lack Africa- specific contexts and leading to less relevant recom-
mendations.

4 IMPLICATIONS FOR MACHINE LEARNING AND RESEARCH OPPORTUNITIES

Contextualization of the fairness criteria: The initial formalization of popular algorithmic fairness
metrics (Barocas et al., 2019), such as demographic parity and equality of opportunity, was intrin-
sically tied to anti-discrimination laws in the US (Barocas & Selbst, 2016) around disparate impact
and disparate treatment. This motivated the development of methodologies to ensure that automated
systems did not have discriminatory effects based on contextually-relevant protected attributes such
as race and gender. As highlighted in previous sections, the diversity and axes of disparities between
protected attributes in HICs and LMICs lead to a fundamental need to study which fairness defini-
tions are pertinent within the local historical context. By virtue of the field still being in its infancy
on the African continent, there is a unique opportunity to engage different stakeholders (researchers,
policymakers, governance, etc) to define relevant fairness desiderata in accordance with local laws
and beliefs. An interdisciplinary approach at this stage is particularly important to avoid poten-
tial issues around competing definitions of fairness (Verma & Rubin, 2018; Kleinberg et al., 2016;
Chouldechova, 2017) and purely mathematical formulations that lead to unintended performance
degradation for all groups (Mittelstadt et al., 2023).

Practical fairness considerations: Further studies in the algorithmic fairness field have highlighted
the different ways in which bias can manifest in each step of the ML development pipeline namely
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during (1) problem selection, (2) data collection and processing, (3) algorithm development and
evaluation and (4) post deployment considerations (Chen & Ghassemi, 2021). A plethora of de-
biasing approaches have been proposed in the literature to tackle potential biased during steps (3)
through (5) (Mehrabi et al., 2021; Barocas et al., 2019). In addition to better understanding how
these mitigation strategies should be adapted to account for varying fairness attributes specific to
LMICs, a particular hindrance to the application of machine learning techniques to the health do-
main in Africa resides in the problem formulation, collection and utilization of data (Okolo et al.,
2023). Below, we highlight examples of these challenges and important fairness considerations
when using machine learning tools in Africa.

• problem selection: As noted in (Chen & Ghassemi, 2021), biases stemming from unaligned in-
centives by external organizations can severely affect, for example, which diseases are studied.
This has a trickling effect in terms of which data is collected regardless of relevance to the local
population. It is particularly important at this step to consider the potential biases of stakeholders
and ensure affected communities are included in the decision making step.

• scarcity of digitalized health records: patients health records remain predominantly paper-based
due to a lack of infrastructure and computer resources to keep digital copies. This phenomenon is
exacerbated in rural areas leading to further inequalities. Awareness of the crucial role of having
electronic records in order to utilize machine learning tools ushers in new proposals to digitalize
existing handwritten data. Challenging fairness problems in this step include how to develop
automated tools that can reliably process underserved African languages as well as how to ensure
that such efforts are equally distributed across regions.

• prevalence of survey data: most application of machine learning to health remain tied to data col-
lected in clinical settings (Mhasawade & Chunara, 2021). In the African context, the prevalence
of self-reported survey data introduces a number of biases including unbalanced representation of
groups based on who answers the survey and potentially incorrect self-reported information about
a responder’s attributes. Application of machine learning methods to such data modality and how
to account for measurement biases remain an underexplored area of research.

Caution around using pretrained models: Given the scarcity of readily available large training
datasets from Africa, a common approach consist of finetuning large pretrained models to down-
stream tasks. This approach is particularly tempting as it allows to harness the power of large models
whose training requires considerable resources and infrastructure within more resource-constrained
environments. However, there are several pitfalls in this approach that could lead to unintended
biases in the final model. A prevalent concern lies within the inability to adapt fairness properties
to distribution shifts. Indeed, demographic shifts (i.e. changes in the distribution of the fairness
attribute), covariate shifts (i.e. changes in the distribution of features) or label shifts (i.e. changes in
the distribution of outcomes) are likely to occur when deploying models off-the-shelf or finetuning
to a target dataset. However, even if bias mitigation techniques are used at training time, there are
no guarantees that the fairness property will hold after deployment or after the finetuning process.
Ensuring the generalizability and transferability of fairness properties across domains and under
distribution shifts is a new and active area of research (Schrouff et al., 2022; Giguere et al., 2022;
Singh et al., 2021; Baldini et al., 2022; Sadeghi & Boddeti, 2020). Use-cases specific to the African
context can serve as motivating examples and drive impactful advances in this area.

5 CONCLUSIONS

There are unique opportunities for machine learning to make positive impact in Africa and advance
global health equity. However there should be proactive steps taken to prevent harms, reduce biases,
and ensure fairness. To develop fair machine learning models, one needs first to understand what the
fairness attributes of a given context are and where to apply them. We provide this work as a starting
point towards building the foundation for fairness in machine learning in Africa. Future work will
involve qualitative and quantitative analysis of machine learning models, how they respond to these
attributes, and contextualized mitigation proposals.
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A APPENDIX

A.1 DEFINITIONS

We define terms that are used in this paper. While there is not a standardized definition of fairness,
we mainly follow the taxonomy described in (Mehrabi et al., 2021). We also provide other terms of
general informational value for further understanding of fairness.

Discrimination: ‘Discrimination can be considered as a source for unfairness that is due to human
prejudice and stereotyping based on the sensitive attributes, which may happen intentionally or
unintentionally’.

Bias: ‘Bias can be considered as a source for unfairness that is due to the data collection, sampling,
and measurement.’

Fairness: ‘In the context of decision-making, fairness is the absence of any prejudice or favoritism
toward an individual or group based on their inherent or acquired characteristics’

Types of Fairness

Individual Fairness (Dwork et al., 2012): ‘Individual fairness is captured by the principle that any
two individuals who are similar with respect to a particular task should be classified similarly’.

Counterfactual Fairness (Kusner et al., 2017) ‘The counterfactual fairness definition is based on the
“intuition that a decision is fair towards an individual if it is the same in both the actual world and a
counterfactual world where the individual belonged to a different demographic group.’

Group Fairness:

Broadly, group fairness notions aim to ‘treat different groups equally’. Below are two main statistical
group fairness definitions that exist in the literature.

• Equal Opportunity (Hardt et al., 2016): ‘This fairness notion requires that the probability
of a person in a positive class being assigned to a positive outcome to be equal for both
protected and unprotected (female and male) group members. In other words, the equal
opportunity definition states that the protected and unprotected groups should have equal
true positive rates’.

• Demographic Parity (Dwork et al., 2012): ‘ requires that the overall proportion of individ-
uals in a protected group predicted as positive (or negative) to be the same as that of the
overall population’

Fairness in Relational Domains: ‘A notion of fairness that is able to capture the relational structure in
a domain—not only by taking attributes of individuals into consideration but by taking into account
the social, organizational, and other connections between individuals’

Subgroup Fairness: Subgroup fairness intends to obtain the best properties of the group and indi-
vidual notions of fairness. It picks a group fairness constraint like equalizing false positive and asks
whether this constraint holds over a large collection of subgroups

Axes of Disparities

Africa-specifc axes of Disparities: Disparities that primarily impact Africa

Global axes of disparities in the context of Africa: Disparities that have global implications but
contextualized for Africa.
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