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ABSTRACT

Test time domain adaptation has come to the forefront as a challenging scenario in
recent times. Although single domain test-time adaptation has been well studied
and shown impressive performance, this can be limiting when the model is de-
ployed in a dynamic test environment. We explore this continual domain test time
adaptation problem here. Specifically, we question if we can translate the effec-
tiveness of single domain adaptation methods to continuous test-time adaptation
scenario. We propose to use the given source domain trained model to contin-
ually measure the similarity between the feature representations of the consecu-
tive batches. A domain shift is detected when this measure falls below a certain
threshold, which we use as a trigger to reset the model back to source and continue
test-time adaptation. We demonstrate the effectiveness of our method by perform-
ing experiments across datasets, batch sizes and different single domain test-time
adaptation baselines. This can have a significant impact in a variety of applica-
tions, from healthcare and agriculture to transportation and finance. As a result,
this research has the potential to greatly benefit developing countries by provid-
ing new tools and techniques for building more effective and efficient machine
learning systems.

1 INTRODUCTION

The ability to continually adapt models in real-time is becoming increasingly important in today’s
fast-paced technological landscape. This is especially true for developing countries, where access to
diverse data and changing environments can pose unique challenges for machine learning models.
The traditional approach of single domain test-time adaptation, while effective in certain scenarios,
can limit the performance of models when deployed in dynamic and ever-changing environments.

This research broadly operates under a stringent assumption that the training and testing data come
from the same distribution. This assumption can be problematic when there is a significant differ-
ence between the distribution of the training data and the test data, a phenomenon commonly known
as domain shift. This can result in reduced accuracy and performance of the model, as it has not
been trained on data from the testing distribution. To mitigate this vulnerability, various domain
adaptation techniques have been developed to make the models more robust to such shifts. These
techniques aim to align the distributions of the training and testing data, reducing the negative im-
pact of the domain shift on model performance. The study of robustness of deep networks against
distribution shifts has rapidly evolved in recent years, broadly covering the following topics:

Unsupervised Domain Adaptation (UDA): This setting assumes access to labeled source domain
data along with unlabeled target domain data during training. UDA methods (Ganin et al., 2016;
Long et al., 2018; Saito et al., 2018; Xu et al., 2019) primarily aim to align the two domains so that
the supervision from source domain can be transferred to that of target.

Domain Generalization (DG): DG methods (Li et al., 2021; Kim et al., 2021; Zhou et al., 2021)
use multiple source domains to learn robust domain-invariant representations so that the model can
better generalize to unseen test domains.

1



Published as a workshop paper at ICLR 2023

Table 1: Domain adaptation protocols

Setting Source-free Adaptation protocol Target domain
Offline Online Single Continuous

UDA ✓ ✓
SFDA ✓ ✓ ✓
TTA ✓ ✓ ✓

CTTA ✓ ✓ ✓

Source Free Domain Adaptation (SFDA): Contrary to UDA and DG, SFDA methods Liang et al.
(2020); Yang et al. (2022) attempt to adapt any off-the-shelf model given abundant target domain
data. This data is assumed to be available offline and can be shown to the model multiple times for
adaptation.

Test Time Adaptation (TTA): TTA was first proposed by (Wang et al., 2021) with the objective of
leveraging the test data coming in an online manner to adapt a given off-the shelf model. The key
challenges here are: (1) No access to labels and therefore inability to recognise and correct wrong
predictions; (2) No access to source data; (3) Viewing data in an online manner i.e. you have access
to each test minibatch only once.

Continuous Test Time Adaptation (CTTA): Taking another step forward from TTA towards re-
ality, a recent work Wang et al. (2022) formalized the CTTA setting where the test domain can
dynamically change in time. The state-of-the-art approach Wang et al. (2022) reduces error ac-
cumulation through weight-averaged and augmentation-averaged predictions. They further avoid
catastrophic forgetting through stochastic restoration of source pre-trained weights. However, this
method is computationally very taxing as also acknowledged by the authors. Therefore, our solution
can be more effectively deployable in developing countries.

We highlight the difference between various domain adaptation protocols in Table 1. In this work,
we specifically question the differences between TTA and CTTA and aim to bridge the gap between
the two.

Why TTA can hurt CTTA? TTA methods designed for single domain adaptation tend to overfit on
the current test domain which can lead to catastrophic forgetting of discriminative information from
source in time. This can be extremely harmful when the model could encounter new test domains in
the future.

Can we simulate TTA setting in CTTA? We recognise that a simplistic approach to CTTA is to
adapt to the test domain in a TTA manner i.e. adapt the model using a TTA algorithm and then reset
the model back to the source model everytime it encounters a domain shift. This allows the model
to learn representations by leveraging the benefits of single domain TTA and at the same time avoid
error accumulation in time by not carrying over an overfit model to the next domain.

2 PROBLEM SETTING

Given an off-the shelf model hθ comprising of feature extractor f and classifier g trained on a source
domain Dtrain, the objective of TTA is to adapt hθ using test batches xt arriving in an online manner
from a test domain Dtest by minimizing a test time objective as

argmin
θ

Ltest(xt; θ) (1)

In standard TTA addressed in Wang et al. (2021); Boudiaf et al. (2022); Chen et al. (2022), xt comes
from a single test domain Dtest ̸= Dtrain. Here, we address the CTTA setting, where the test domain
Dtest can continuously change sequentially as Dt1,Dt2,Dt3, ...,DtN , where Dti ̸= Dtrain∀i.

3 METHOD

We first briefly describe some recent source-free adaptation methods, namely Tent Wang et al. (2021)
and AaD Yang et al. (2022). Then, we describe our Domain Shift Detection mechanism in detail.
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(a) Batch size=25 (b) Batch size=50 (c) Batch size=200

(d) Batch size=25 (e) Batch size=50 (f) Batch size=200

Figure 1: We observe from the t-SNE plots for (a), (b) and (c) that the classes are better clustered
and separated as the batch-size increases. The color of these clusters also represent the order in
which 15 corruptions are seen. In (d), (e) and (f) we see the corresponding (1 - DSS) signals to the
t-SNE. The red dotted lines are where the actual domain shift happens.

TENT: They propose to use the test feature statistics in the Batch Normalization (BN) layers instead
of those estimated using the source data. Further, they fine-tune the BN’s affine parameters to
minimize the Shannon entropy Lent(xt) = −

∑
c pc log pc, where pc is the softmax score of class c

for a test sample xt.

Attracting and Dispersing (AaD): AaD is a simple and effective approach recently proposed for
SFDA. They treat SFDA as an unsupervised clustering problem where they enforce consistency
between predictions of local neighbourhood features while also ensuring diversity in the feature
space. The test objective for a sample xi from a test batch xt is L(xi) = −

∑
pj∈Ni

pTi pj +

λ
∑

xm∈xt
pTi pm. Here Ni is the set of neighbours of xi and pm refers to the softmax prediction

vector of a sample xm ∈ xt.

The above mentioned methods achieve state-of-the-art performance in single domain adaptation
setting. However, these methods suffer from error accumulation due to over-fitting in CTTA. We
observe that source model is a more reliable starting point for adaptation than continually adapting.
This is because the source model has already been trained on a large amount of data, and it has
learned some general representations that can be transferred to the new domain. By adapting the
source model on the new domain, the model can adjust its representations to better fit the new data
while retaining the knowledge learned from the source domain.

3.1 DOMAIN SHIFT DETECTION

As mentioned earlier, using TTA methods like TENT can hurt in CTTA setting because of error
accumulation. This in turn degrades the model over time. Here, we propose a simple but effective
solution to this by resetting the model when a domain shift is encountered.

Can source model characterize domain shift? In CTTA, the data distribution changes over time,
meaning that each batch of samples can come from a different domain. To handle this challenge,
we leverage the feature extractor of the source model f , which we empirically observed to capture
domain information. The features of each sample vf = f(x) has two components: (i) Domain-
specific component vd which represents the part of the feature that is unique to a particular domain
and distinguishes it from other domains; (ii) Class-specific component vc that is relevant to the
classification task. By separating the features into these two components, the model can learn to
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identify and adapt to changes in the distribution of the data between batches, while still maintaining
the ability to perform well on the classification task.

We hypothesize that Evf = Evd + Evc. Given, the samples come from the same domain, they
have the same domain specific component Evd = vd, also the class specific components vc would
be uniformly spread across all classes as Evc = 1

C

∑C
k=1 vk = vc, where vc is a constant vector

and C denotes the number of classes. Hence, Evf = vd + vc. In this formulation, any change
in the domain specific component Evd can in-turn be captured by Evf , which can be empirically
estimated.

In CTTA, given a test batch xt = x1, x2, ..., xN at time instant t, we can estimate Evf (t) as the
mean feature vector Evf (t) = 1

N

∑N
k=1 vf,i, where vf,i = f(xi). This shows that these domain

specific components can be used to identify or detect a domain shift. We empirically observe that
vc → 0 as N → ∞. In Figure 1, we visualize the average batch features using different batch
sizes and for 15 corruptions in the CIFAR-100C. As the batch size increases the domain clusters
become more compact indicating the aforementioned tendency. Because of this, the domain-specific
component becomes more distinctive with larger batch sizes.

This naturally acts as our domain shift signal. We define the cosine similarity of consecutive batches
as Domain Shift Signal (DSS), which we compute as

DSS = CosineSimilarity(Evf (t),Evf (t− 1)) (2)

We us this signal to detect a change in domain using a threshold τ . When Evf (t) comes from the
same domain as Evf (t − 1), DSS is high, in turn continuing the model adaptation. Otherwise,
we trigger a model reset back to the source model. We briefly describe the domain shift detection
mechanism below.

Algorithm 1: Domain Shift Detection module
Input:
Source feature extractor f
Threshold for detection τ
Domain Shift Detection:
for each batch xt:
vf,i = f(xt,i)

Evf (t) =
1
N

∑N
k=1 vf,i

DSS(Evf (t),Evf (t− 1)) =
Evf (t)

TEvf (t−1)
||Evf (t)||||Evf (t−1)||

if DSS(Evf (t),Evf (t− 1)) < τ :
Reset model to source

Continue TTA

4 EXPERIMENTS AND RESULTS

4.1 DATASETS

Following the protocol in Wang et al. (2022), we use CIFAR10C and CIFAR100C datasets which
are designed to evaluate the robustness of classification networks. These datasets contain images
that have been corrupted with 15 different types of corruptions at 5 different levels of severity. In
the case of the corruption benchmark, this sequence consists of all 15 corruptions, each encountered
at the highest severity level 5.

4.2 BASELINES

We compare the performance of TENT and AaD in three different scenarios:
TTA: Firstly, we consider the TTA setting introduced by TENT Wang et al. (2021) where the model
is set to source whenever there is a domain shift. This domain shift information is explicitly provided
to the model.
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Table 2: Results as error percentages (lower is better) for CIFAR-100C
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Mean
Source 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4
CoTTA 40.1 37.7 39.7 26.9 38.0 27.9 26.4 32.8 31.8 40.3 24.7 26.9 32.5 28.3 33.5 32.5
TENT-TTA 37.1 34.65 33.7 25.1 37.66 27.15 25.4 30.5 31.5 33.3 23.8 27.8 32.7 28.4 36.5 31.0
TENT-CTTA 92.7 37.2 35.7 41.6 37.5 50.8 47.7 48.5 58.7 64.8 72.4 70.5 82.2 88.5 89.9 61.2
TENT-DSS 37.2 35.9 41.6 25.2 37.6 27.2 25.4 30.5 31.6 33.2 23.8 27.7 32.6 28.4 36.5 31.5
AaD-TTA 41.9 39.8 42.0 27.2 41.4 29.3 27.5 34.5 34.7 40.3 26.2 30.2 35.2 32.3 40.8 34.9
AaD-CTTA 41.9 40.1 43.5 31.7 46.8 39.2 41.6 58.2 67.7 76.2 79.1 90.1 93.0 93.8 94.6 62.5
AaD-DSS 41.9 40.1 43.5 27.2 41.4 29.3 27.5 34.5 35.0 40.3 26.2 30.2 35.2 32.3 40.8 35.0

(a) CIFAR-10C (b) CIFAR-100C

Figure 2: Mean error rates for CIFAR-10C and CIFAR-100C using TENT and AaD

CTTA: Next, we consider the CTTA, as introduced by CoTTA Wang et al. (2022). Similar to
the TTA setting, the continual benchmark also uses an off-the-shelf model pre-trained on the source
domain. However, unlike the standard TTA setting, the continual setting does not require knowledge
of when the domain changes, and instead adapts the model online to a sequence of test domains.

DSS: Finally, we use our domain shift signal to mimic the TTA setting while we are in the CTTA
setting. By using the domain shift signal to dynamically set the model source even without having
the underlying domain shift information. Thus the model can adapt to the changing distributions
without accumulation of error, effectively mitigating the impact of domain shift.

4.3 IMPLEMENTATION DETAILS

For the online CTTA task, the source model is a network pre-trained on the clean CIFAR10 or
CIFAR100 dataset. The network is evaluated on the largest corruption severity level 5 and is con-
tinually adapted to each corruption type in a sequential manner. The CIFAR10 experiments use
a WideResNet-28 model while the CIFAR100 experiments use a ResNeXt-29 architecture, both
adopted from the RobustBench benchmark. We perform all experiments with a batch size of 200.
We update BN layers using the Adam optimizer with a learning rate of 1e-3 for TENT and 1e-4 for
AaD. We use threshold τ of 0.98 for both CIFAR-10C and CIFAR-100C.

5 CONCLUSION

In this work, we propose a modular method for handling the challenge of continual test-time do-
main adaptation. We address the limitations of traditional single domain adaptation by developing
a domain shift detection mechanism that continually measures the similarity between feature repre-
sentations of consecutive batches. When a shift is detected, our method resets the model back to the
source and continues test-time adaptation. Our experiments across standard datasets, batch sizes,
and single domain test-time adaptation baselines demonstrate the effectiveness of our approach,
making it a promising solution for the continual domain test-time adaptation problem.
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