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ABSTRACT

Research in deep learning is restrictive in developing countries due to a lack of
computational resources, quality training data, and expert knowledge, which neg-
atively impacts the performance of deep networks. Moreover, these models are
prone to suffer from distribution shift during testing. To address these challenges,
this paper presents a novel approach for fine-tuning deep networks in a Domain
Generalization setting. The proposed framework, JumpStyle, comprises two key
components: (1) an innovative initialization technique that jumpstarts the adapta-
tion process, and (2) the use of style-aware augmentation with pseudo-labeling, in
conjunction with a simple and effective test-time adaptation baseline named Tent.
Importantly, JumpStyle only requires access to a pre-trained model and is not
limited by the training method. The effectiveness of this approach is extensively
evaluated through experiments.

1 INTRODUCTION

Research in deep learning has achieved remarkable progress in solving several computer vision
tasks like image classification, object detection, segmentation Deng et al. (2009); Lin et al. (2014);
Everingham et al. (2010); Chen et al. (2017); He et al. (2017); Ren et al. (2015). However, their
performance usually drops significantly when data from previously unseen domains are encoun-
tered during testing, which is quite common in real scenarios. To overcome this, there has been
a considerable amount of research interest in areas like Unsupervised Domain Adaptation (UDA),
Domain Generalization (DG), etc. UDA setting assumes access to labeled source and unlabeled
target domain data during training. On the other hand, the objective of DG is to use multiple source
domains to learn domain invariant representations, thus preparing the model for future deployment.
But, none of these approaches leverage the rich information inherently present in the test data.

This recently opened up a new avenue of research, namely Test-Time Adaptation (TTA) designed
to leverage the test data to adapt any off-the-shelf model, hence reducing the adverse effect of dis-
tribution shift. TTA can be used to improve the performance of deep learning models in healthcare,
autonomous driving, agriculture etc. One such application is to use an object detection model trained
using European and American road data to adapt in Indian roads. The ability of the this framework
to improve the performance of deep networks in situations where there is limited access to quality
training data or computational resources makes it a valuable tool for various industries and applica-
tions in developing countries.

Here, we specifically focus on the approaches which can adapt any off-the-shelf model using the
unlabeled test data in an online fashion. Very recently, a classifier adjustment framework Iwasawa
& Matsuo (2021) was proposed for test-time adaptation in DG setup, which reports impressive per-
formance for several backbones. Inspired by this work, here, we present a complementary analysis,
where we analyze if different backbones trained using simple Empirical Risk Minimization (ERM)
or even state-of-the-art DG approaches Zhou et al. (2021) specialized for generalization can further
benefit from TTA using unlabelled test data.

Towards this goal, we propose Jump-Style framework that builds upon the state-of-the-art TTA
method Tent Wang et al. (2021) and suitably adapt it for the DG application.
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2 PROBLEM STATEMENT

Domain Generalization (DG): The objective here is to use the given multiple labeled source do-
mains, Dtrain = D1 ∪D2 . . . ∪Ddtr

, to learn a model Fθ using Dtrain, such that it can generalize
well to an unseen test domain Dtest /∈ Dtrain.

Testing phase: In general, the trained model Fθ is directly used for testing. However, it is possible
to further improve its performance by using online data available in batches to perform TTA of Fθ.

3 METHOD

The JumpStyle framework, we propose for TTA in DG setting has two primary components: (1) Ef-
fective Initialization (Jump Start), and (2) Consistent style-aware augmentations for pseudo-labeling.
We first briefly describe the TTA method Tent Wang et al. (2021) which we use as a baseline here.

Entropy Based Tent Framework: Tent is a fully test-time adaptation method designed to adapt
any given off-the-shelf model using only the available test data. In general, during training, the BN
layers estimate the channel-wise statistics µ, σ of the feature maps using the training data. While
these statistics are relevant when the test samples are drawn from the same distribution as the training
data, they are not optimal when there is a distribution shift during testing. In Tent, instead of the
source data statistics {µs, σs}, the test data statistics {µt, σt} are used. Further, the BN affine
parameters {γ, β} are finetuned to minimize the test prediction entropy (defined later).

We now describe the two proposed modules that we integrate with the Entropy-based Tent frame-
work for this application. Specifically, given a trained model Fθ parameterized by θ, our objective
is to utilize the target samples xt of batch size n, to adapt the model.

1) Jump start initialization of the BN parameters: Tent accounts for covariate shift by replacing
the training batch normalization (BN) statistics with the statistics of the test data. However, the
number of target samples available in online testing is usually limited, which may not be a good
representation of the entire target distribution. To address this, we propose a simple, yet effective
way to correct the test batch statistics by using the training domain statistics as a prior (Schneider
et al., 2020). Also, as the quality of the estimated test domain statistics depends on the test batch
size n, we combine the source and target statistics as follows

µ̄ = α(n)µs + (1− α(n))µt

σ̄2 = α(n)σ2
s + (1− α(n))σ2

t

(1)

where µt and σ2
t are the online estimated test batch statistics, µs and σ2

s are the source data statistics
available as part of the given trained model.

The weight α(n) is a function of batch size n and has a significant effect on the final performance.
In Schneider et al. (2020), a method was proposed to compute this weight based on the batch size
n and an additional hyper-parameter. Since the weight should ideally be a function of only the
batch-size, in this work, we design α(n) to be:

α(n) = 0.5(1 + e−κn); where κ = 0.05 (2)

The weight is designed such that it satisfies the following criteria: As the number of samples in
the batch n decreases, the weight for the source statistics α(n) should increase. In the extreme
case, when n = 0, α(n) = 1. But when n > 0, since the number of test samples available is still
limited, the smallest value of α(n) is constrained to not fall below 0.5. The value of κ is obtained
empirically, but the proposed weighting rule has the advantage that it only depends on the batch-size
as desired. This weighting is used for all the experiments reported in this work. In addition to this
initialization, after the data from a test-batch is passed through the model, its style-aware weak and
strong augmentations are used to further update the BN affine parameters.

2) Pseudo-labeling based on consistency of style-augmented targets: Performing pseudo su-
pervision using pseudo labels for samples with consistent predictions across augmented versions of
unlabelled data has shown remarkable success in semi-supervised learning (SSL) Sohn et al. (2020);
Berthelot et al. (2019). Here, we explore whether such techniques aid TTA in DG scenario, which
to the best of our knowledge, has not been explored before. More specifically, we propose to check
consistency of style-augmented target samples, which is more suited for the DG task.
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Figure 1: DG training (left) using Photo, Art-painting, Cartoon as source domains. TTA using
JumpStyle (right) on test sample xt from test domain Sketch. Consistency across predictions of true
sample pt and weak style augmentation ptw are used to pseudo label xt. BN affine parameters are
updated to minimize the pseudo label and entropy loss.
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During testing, given two target samples xi and xj , we create an augmented feature of xi using the
style of xj . Let fi and fj denote their respective feature maps at a certain layer. The channel-wise
means µ(fi), µ(fj) and standard deviations σ(fi), σ(fj) are representative of image styles. In this
layer, these feature statistics are mixed, thereby generating a pseudo-style, which is then applied to
the style normalized feature of fi to obtain style augmented feature fSA

i Zhou et al. (2021)

µmix(fi;λ) = λµ(fi) + (1− λ)µ(fj)

σmix(fi;λ) = λσ(fi) + (1− λ)σ(fj)

fSA
i = σmix(fi;λ) ∗

fi − µ(fi)

σ(fi)
+ µmix(fi;λ)

(3)

where λ ∈ [0, 1] is the mixing coefficient. Features thus obtained preserve the semantic content of
the input xi, while only the style is perturbed using that of the other image.

Inspired by Sohn et al. (2020), we compute two types of style augmentations for each target sample,
namely weak style augmentation and strong style augmentation as described next. Let FSA

θ (;λ)
denote the entire model including the feature extractor, classifier and the softmax layer with the
style augmentations. Setting the mixing coefficient λ = 1 reduces the model FSA

θ (;λ) to the original
backbone Fθ. Given a test batch xt, the samples are randomly permuted within the batch to obtain
x̃. The features of xt are perturbed by instance-wise mixing of styles from features of x̃ as described
in eqn. (3). For a sample xt, we denote its prediction as pt, and those of its weak and strong
augmentations as ptw and pts respectively. These are obtained as follows

pt = FSA
θ (xt; 1); ptw = FSA

θ (xt;λw); pts = FSA
θ (xt;λs) (4)

To better utilise the target samples during test-time, we generate pseudo labels for the samples
whose predictions are confident and robust against weak domain shifts. The pseudo labels for the
test sample and its weak augmentation are obtained as ŷt = argmax(pt) and ŷtw = argmax(ptw)
respectively. The pseudo label loss is then computed as

Lpl = Ext∈S [− log pts(ŷt)]; S = {xt|ŷt = ŷtw;max(pt) > τ} (5)

Inspired from Tent (Wang et al., 2021), we also use entropy loss to enforce confident predictions. In
this work, we define this only for the strong style augmentations as follows:

Lent = − 1

n

n∑
t=1

∑
c

pts(c) log pts(c) (6)

where c denotes the class index and n is the test batch size.
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Method VLCS PACS OfficeHome Terra Average
ResNet-50 74.3±0.5 84.1±0.1 66.9±0.2 45.8±1.8 67.8
SHOT-IM 61.5±1.7 84.6±0.3 68.0±0.0 33.8±0.3 62.0

SHOT 61.6±1.8 84.8±0.5 68.0±0.0 34.6±0.3 62.3
PL 63.4±1.8 80.1±3.5 61.3±1.5 36.8±4.4 60.4

PL-C 73.3±0.8 84.7±0.3 66.4±0.3 47.0±1.7 67.9
Tent-Full 75.4±0.6 87.0±0.2 66.9±0.2 42.6±0.8 68.0
BN-Norm 71.3±0.4 85.8±0.1 66.4±0.1 42.3±0.4 66.5

Tent-C 72.4±1.5 84.4±0.1 66.2±0.2 42.4±3.1 66.4
Tent-BN 65.6±1.4 84.9±0.0 67.7±0.2 42.7±0.5 65.2

T3A 76.0±0.3 85.1±0.2 68.2±0.1 44.6±0.9 68.5

JumpStyle 76.9±0.7 87.5±0.6 69.1±0.5 44.7±0.7 69.5

Table 1: Results with ERM approach using ResNet-50 backbone.

Although inspired from the SSL approach Sohn et al. (2020), there are significant differences be-
tween the two approaches as: (i) The weak and strong style augmentations proposed in this work
are better suited for the Domain Generalization objective as compared to the standard image aug-
mentations as in Sohn et al. (2020), which we demonstrate in ablation study (Table( 4)). (ii) Unlike
the semi-supervised approaches, where the whole network is trained/fine-tuned using the pseudo-
labelling loss, here only the BN layers are updated.

Final Test-time adaptation loss: The total loss for adaptation during test time is computed as
a weighted combination of the pseudo-label loss and the entropy loss. The BN affine parameters,
denoted by {γ,β} are updated in an online fashion each time a new batch is available, to minimize
the following test time loss:

Ltest = η ∗ Lpl + (1− η) ∗ Lent (7)

The parameter η balances the two losses, and is empirically set to 0.8 for all the experiments.

4 EXPERIMENTAL EVALUATION

Here, we describe the experiments done to evaluate the effectiveness of the proposed framework.

Datasets used: We perform experiments on four benchmark DG datasets following the same proto-
col as in T3A Iwasawa & Matsuo (2021), namely PACS (Li et al., 2017), VLCS (Fang et al., 2013),
Office-Home (Venkateswara et al., 2017), Terra-Incognita (Beery et al., 2018). We describe these
comprehensively in section A.1

TTA-Baselines: We compare the proposed JumpStyle with the following test-time adaptation
baselines: 1) SHOT-IM (Liang et al., 2020): updates the feature extractor to minimize entropy and
the diversity regularizer; 2) SHOT (Liang et al., 2020): uses pseudo-label loss along with infor-
mation maximization as in (1); 3) PL (Pseudo labelling) (Lee, 2013): updates the entire network
by minimizing the cross-entropy between the prediction and pseudo labels; 4) PL-C (Lee, 2013):
minimizes the pseudo-label loss as above and updates only the linear classifier; 5) Tent-Full (Wang
et al., 2021): is the original method, where the BN statistics and transformations are updated; 6)
BN-Norm (Schneider et al., 2020): only the BN statistics are updated while keeping the affine
parameters fixed; 7) Tent-C (Wang et al., 2021): updates only the classifier to reduce the prediction
entropy; 8) Tent-BN (Wang et al., 2021): adds one BN layer just before the linear classifier and
then modulates its affine parameters.

Implementation Details: Following Iwasawa & Matsuo (2021), we split the data in each
domain into a training (80%) and validation (20%) split. We follow the leave one out protocol for
training and evaluation. In each experiment, three domains act as the source whose training splits
are used to train the model, while the validation splits are used to select the learning rate. Further,
we perform test-time adaptation on the target domain and report the average accuracy over all the
domains in the dataset. The parameters for a TTA framework has to be selected prior to deployment,
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Method PACS VLCS
Batch size=8 Batch size=32 Batch size=64 Batch size=8 Batch size=32 Batch size=64

MixStyle* 82.4 82.4 82.4 75.7 75.7 75.7
Tent-Full 81.2 ±0.9 85.9±0.7 86.7±0.8 69.2±0.6 71.4±0.4 71.9±0.4

T3A 80.5±0.7 84.9±0.5 85.6±0.5 72.6±0.7 75±0.5 75.5±0.6

JumpStyle 85.9±0.7 86.4±0.6 86.8±0.6 76.3±0.4 76.5±0.3 76.1±0.3

Table 2: Results on PACS and VLCS datasets using MixStyle trained DG model. ∗ denotes results
obtained using the official MixStyle Zhou et al. (2021) implementation.

Method VOC LabelMe Caltech SUN09 Average
Tent 69.2±0.3 60.6±0.5 91.0±0.8 66.0±0.6 71.7
+Jump 69.6±0.5 66.0±0.4 96.3±0.6 66.6±0.5 74.6
+Jump+FixMatch 69.8±0.5 64.8±0.3 95.8±0.3 67.7±0.4 74.5

+JumpStyle 71.3±0.4 66.5±0.5 96.5±0.7 68.5±0.7 75.7

Table 3: Ablation study on VLCS dataset using ResNet-18 backbone.

before one has access to test data. Following T3A (Iwasawa & Matsuo, 2021), we set the batch size
to 32 and use training domain validation set to tune the hyperparameters for fair comparison. The
learning rates used were 1e−4 for PACS, VLCS, OfficeHome and 1e−5 for Terra Incognita. We set
α(n) to 0.6 which is computed using eqn.( 2) for n=32 and set η to 0.8. We set λw and λs in eqn. (4)
to 0.9 and 0.75 respectively. The parameter κ in eqn. (2) is fixed to 0.05 for all the experiments. We
describe the selection of hyperparameters in the Appendix A.3

4.1 RESULTS WITH DG BASELINES:

(1) Empirical Risk Minimization: First, we test the proposed TTA framework with the ERM
approach for DG, where labelled samples from multiple source domains are collectively used to
train the network using CE loss. The results of the proposed framework and comparisons with the
other TTA approaches using ResNet-50 backbone in Table 1 for the four datasets. We also perform
experiments with a light-weight ResNet-18 backbone, which we report in the Appendix A.2 We
observe that the proposed JumpStyle outperforms the other approaches for three of the four datasets,
and also on an average. This explains the generalization ability of the proposed approach across
different datasets and backbones.

(2) Mixstyle: Here, we analyze whether TTA can also benefit from the state-of-the-art DG ap-
proaches, which have been designed specifically to obtain domain invariant representations. Since
online TTA depends upon the test batch size, here, we also experiment with different batch sizes
to analyze its effect on the final performance. We report the results obtained using MixStyle with
ResNet-18 backbone and its performance on doing TTA using Tent-Full, T3A and JumpStyle in
Table 2. From these results on PACS and VLCS datasets, we observe the following: (1) The perfor-
mance of Tent-Full and T3A improves significantly for higher batch sizes. However, their perfor-
mance is not satisfactory for smaller batch sizes.

5 CONCLUSION

In this paper, we present a novel framework termed JumpStyle for test-time adaptation in domain
generalization setup. Firstly, we propose an effective scheme to correct the Batch-Normalization
statistics based on the number of test samples available online. Further, we propose a test-time
consistency regularization method to ensure consistent predictions across perturbed versions of test
samples. In specific, we use MixStyle which is a label preserving feature perturbation module to
obtain weak and strong augmentations, across which we enforce consistent predictions. Extensive
experiments performed using backbones with different representation ability, training methods and
augmentations demonstrate the effectiveness of the proposed framework.
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A APPENDIX

A.1 DATASET DETAILS

PACS (Li et al., 2017) consists of four domains, Photo, Art painting, Cartoon and Sketch, where
the domain shift is particularly due to image styles. It has 9, 991 images belonging to 7 classes.
VLCS (Fang et al., 2013) is a collection of four datasets, Caltech101 (Fei-Fei et al., 2006), La-
belMe (Russell et al., 2008), SUN09 (Choi et al., 2010), VOC2007 (Everingham et al., 2010) with
10, 729 samples from 5 classes. Office-Home (Venkateswara et al., 2017) consists of four do-
mains, Art, Clipart, Product, Real-world, with 15, 500 images of 65 objects in office and home
environments. Terra-Incognita (Beery et al., 2018) contains photos of wild animals. Following
Gulrajani & Lopez-Paz (2021); Iwasawa & Matsuo (2021), we use the images captured at locations
L100, L46, L43, L38 as the four domains. This contains 24788 examples of 10 different classes.

A.2 JUMPSTYLE WITH DIFFERENT BACKBONES

We perform experiments with ResNet-50 and ResNet-18 backbones and observe that Jumpstyle
outperforms all the prior test-time adaptation methods.

Backbone Method VLCS PACS OfficeHome Terra Average
ResNet-50 ResNet-50 74.3±0.5 84.1±0.1 66.9±0.2 45.8±1.8 67.8

SHOT-IM 61.5±1.7 84.6±0.3 68.0±0.0 33.8±0.3 62.0
SHOT 61.6±1.8 84.8±0.5 68.0±0.0 34.6±0.3 62.3

PL 63.4±1.8 80.1±3.5 61.3±1.5 36.8±4.4 60.4
PL-C 73.3±0.8 84.7±0.3 66.4±0.3 47.0±1.7 67.9

Tent-Full 75.4±0.6 87.0±0.2 66.9±0.2 42.6±0.8 68.0
BN-Norm 71.3±0.4 85.8±0.1 66.4±0.1 42.3±0.4 66.5

Tent-C 72.4±1.5 84.4±0.1 66.2±0.2 42.4±3.1 66.4
Tent-BN 65.6±1.4 84.9±0.0 67.7±0.2 42.7±0.5 65.2

T3A 76.0±0.3 85.1±0.2 68.2±0.1 44.6±0.9 68.5

JumpStyle 76.9±0.7 87.5±0.6 69.1±0.5 44.7±0.7 69.5
ResNet-18 ResNet-18 73.0±0.6 79.5±0.4 61.8±0.3 41.7±0.9 64.0

SHOT-IM 61.6±0.3 82.1±0.3 62.5±0.3 32.8±0.4 59.8
SHOT 61.8±0.3 82.3±0.2 62.8±0.2 32.7±0.4 59.9

PL 67.0±0.6 72.9±1.0 56.3±2.5 35.4±1.7 57.9
PL-C 71.8±1.3 78.9±0.4 61.7±0.3 43.1±0.9 63.9

Tent-Full 72.3±0.3 83.9±0.3 62.7±0.2 36.9±0.3 64.0
BN-Norm 70.4±1.0 82.7±0.1 62.0±0.1 36.4±0.2 62.9

Tent-C 71.3±1.5 74.6±1.9 60.5±0.4 40.9±0.5 61.8
Tent-BN 64.7±0.7 81.1±0.2 62.5±0.3 36.4±0.9 61.2

T3A 74.5±0.9 81.4±0.2 63.2±0.4 39.5±0.3 64.6

JumpStyle 75.7±0.4 86.1±0.6 63.3±0.3 40.5±0.5 66.4

Table 4: Results with ERM approach using ResNet-50 and ResNet-18 backbones.

A.3 HYPERPARAMETER SELECTION

As mentioned in Section 4, we use the training domains validation set to determine the hyperparam-
eters η, α and the use of MixStyle layers.

1) We observed that η = 0.8 gave the best TTA performance on training domains validation set. For
further insight, we vary η in JumpStyle and report the results in Table 5. Higher η implies higher
weight for pseudo label loss when compared to entropy loss. Thus, consistency checked pseudo-
labels provide stronger supervision and help to adapt to the target domain better, leading to improved
performance.
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η VOC LabelMe Caltech SUN09 Average

0.2 68.3±0.7 66.0±0.6 96.3±0.3 63.8±1.2 73.6
0.5 70.0±0.8 66.2±0.5 96.5±0.3 65.4±1.4 74.5
0.8 71.3±0.4 66.5±0.5 96.5±0.4 68.5±0.6 75.7

Table 5: Performance with varying η on VLCS using ResNet-18.

2) We study the choice of α to mix the source and target BN statistics. As the batch size can be
varying during test-time and the quality of test statistics depends on its(higher batch size gives better
estimates), we perform experiments setting α to constants 0.4, 0.5, 0.7 and compare the results with
the proposed choice of α(n) using eqn.(2).

α(n) VOC LabelMe Caltech SUN09 Average

0.4 70.7±0.4 64.8±0.7 96.5±0.3 67.3±0.4 74.8
0.5 71.0±0.5 65.9±0.5 95.9±0.4 67.7±0.4 74.8
0.7 71.0±0.4 66.3±0.5 96.5±0.4 68.0±0.6 75.4
Ours (0.6) 71.3±0.4 66.5±0.5 96.5±0.4 68.5±0.6 75.7

Table 6: Performance with varying α on VLCS using ResNet-18.

3)Based on the analysis presented in MixStyle (Zhou et al., 2021) and our experiments (Table 7), we
insert the proposed Style Augmentation layers after the first three ResNet blocks as the early layers
contain style information. Results in Table7 show that inserting these layers after each of the three
ResNet blocks performs the best.

layers VOC LabelMe Caltech SUN09 Average

1 69.3±0.8 66.3±0.7 96.5±0.2 63.7±1.6 74.0
1, 2 70.33±0.7 66.4±0.5 96.3±0.3 65.8±1 74.7
1,2,3 71.3±0.4 66.5±0.5 96.5±0.4 68.5±0.6 75.7

Table 7: Performance with different layers for augmentation.
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