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ABSTRACT

Large machine learning models trained on diverse data have recently seen un-
precedented success. Federated learning enables training on private data that may
otherwise be inaccessible, such as domain-specific datasets decentralized across
many clients. However, federated learning can be difficult to scale to large models
when clients have limited resources. This challenge often results in a trade-off
between model size and access to diverse data. To mitigate this issue and facilitate
training of large models on edge devices, we introduce a simple yet effective strat-
egy, Federated Layer-wise Learning, to simultaneously reduce per-client mem-
ory, computation, and communication costs. Clients train just a single layer each
round, reducing resource costs considerably with minimal performance degrada-
tion. We also introduce Federated Depth Dropout, a complementary technique
that randomly drops frozen layers during training, to further reduce resource us-
age. Coupling these two techniques enables us to effectively train significantly
larger models on edge devices. Specifically, we reduce training memory usage by
5× or more in federated self-supervised representation learning, and demonstrate
that performance in downstream tasks is comparable to conventional federated
self-supervised learning.

1 INTRODUCTION

Over the last several years, deep learning has witnessed a rapid paradigm shift towards large foun-
dational models trained on massive datasets (Brown et al., 2020; Chowdhery et al., 2022). These
models learn representations which often extend to diverse downstream tasks. However, when pre-
training data is distributed across a large number of devices, it becomes impractical to train models
using centralized learning. In these cases, Federated Learning (FL; Konečnỳ et al., 2016) allows
participating clients to train a model together without exchanging raw data. This privacy-preserving
property makes FL a popular choice for a range of applications, including face recognition (Mei
et al., 2022a), autonomous driving (Li et al., 2021), recommendation systems (Ning et al., 2021),
and self-supervised representation learning (Vemulapalli et al., 2022). In self-supervised learning,
SimCLR (Chen et al., 2020), BYOL (Grill et al., 2020), and SimSiam (Chen & He, 2021) are widely
used approaches that can be adapted for use in FL settings using algorithms like Federated Aver-
aging (FedAvg; McMahan et al., 2017). Representation learning benefits from large models due to
their capacity to learn more nuanced and reliable representations of the data (Chen et al., 2022; Tran
et al., 2022). However, in cross-device FL settings, the limited resources of edge devices (including
memory, computation capacity, and network bandwidth) impedes the development of large models
(Wang et al., 2021; Kairouz et al., 2021). In this work, we focus on federated training of large
representation learning models on a large number of edge devices under resource constraints.
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Typically in FL, clients’ models share a single global architecture and perform end-to-end training
in each communication round (McMahan et al., 2017). However, many edge devices (e.g., Internet
of Things (IoT) devices, mobile phones, tablets, and personal computers) lack sufficient memory
and compute to train most existing large ML models. For example, the Google Pixel 6 has 12 GB of
memory, which is insufficient to naively train a multi-billion parameter model. Communication of
such a model and its gradient updates during every round of FL is also prohibitively data-intensive
and time-consuming. These resource constraints create obstacles for real-world federated learning
applications with large-scale models.

Related Work One direction to manage resource constraints for federated learning on edge de-
vices is to carefully select model architecture and hyperparameters (Cheng et al., 2022) to ensure
that it can be trained and run efficiently on edge devices. Another direction is to use techniques such
as model compression (Xu et al., 2020) and pruning (Jiang et al., 2022) to reduce the size and com-
plexity of the model, making it more suited for training and deployment on edge devices. This can
be done by removing redundant or unnecessary layers within the model, or by using low-precision
arithmetic to reduce the amount of memory and computation required. In both cases, model perfor-
mance degradation is usually unavoidable. Some methods rely on partially local models to avoid
communicating entire models with a central server (Singhal et al., 2021), but these approaches do
not reduce local memory usage on edge devices. Other approaches involve retaining part of a model
on a central server (Augenstein et al., 2022), which can reduce the need for local resource usage
and is thus complementary to our work but does not itself enable training larger local models. In
addition, FL methods designed for heterogeneous systems (Caldas et al., 2018; Horvath et al., 2021;
Mei et al., 2022b) are able to construct sub-models at different complexities from one unified base
model. One of the early works in this direction is Federated Dropout (Caldas et al., 2018), which
allows users to train using smaller subsets of the global model, reducing the client communication
and computation costs. Empirically, this method can drop up to 50% of model parameters, but
will degrade model performance. FjORD (Horvath et al., 2021) improves upon Federated Dropout
by introducing an ordered dropout technique that drops adjacent components of the model instead
of random neurons. Experiments by Horvath et al. (2021) show that ordered dropout can bring
computational benefits and better model performance. More recently, FLANC (Mei et al., 2022b)
formulates networks at different capacities as linear combinations of a shared neural basis set, so
sub-models can be composed by using capacity-specific coefficients. While these methods can re-
duce average local resource usage in FL, full model training is still needed for certain clients, and
thus the resource usage upper bound is still determined by the base model size.

Our Contributions Full utilization of available resources in cross-device FL remains a challeng-
ing task. In this paper, we propose Federated Layer-wise Learning, a strategy for resource-saving
federated training. In particular, training is divided into several phases. In each phase, we update
only one active layer and freeze parameters in fixed layers. As shown in Fig. 2(b), our experimen-
tal evaluation demonstrates that Federated Layer-wise Learning (FLL) can significantly reduce the
resource usage of a single client compared to federated end-to-end learning (FEL) in all aspects.
Specifically, FLL only uses 7–22% memory, 8–39% computation, and 8–54% communication com-
pared to FEL. In addition, we demonstrate that Depth Dropout is an effective complementary strat-
egy in federated layer-wise learning, which further reduces resource usage upper bounds without
degrading model performance.

2 METHODS

We consider the canonical cross-device FL scenario, in which a large distributed population of
clients contributes to training a global model using their locally stored data (Kairouz et al., 2021).
In such scenarios, the general training process involves the following steps: first, a coordinating
server sends the current set of model parameters to each contributing device. Next, each device runs
a local training algorithm and sends the result back to the server. Finally, the server aggregates the
model updates received from all devices to determine the new set of model parameters and restarts
the cycle. As previously discussed, device resource constraints limit real-world large-scale federated
learning applications and lead to a trade-off between model complexity and data accessibility.
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Figure 1: (a) Overview of Federated Layer-wise Learning. (b) Schematics of training procedure
with Depth Dropout for a 5-layer model with a budget of 3 layers.

2.1 FEDERATED LAYER-WISE LEARNING

To address resource constraints when training models in FL, we propose a simple yet effective
Federated Layer-wise Learning technique. We motivate and apply the method to self-supervised
learning (Chen et al., 2020) in this work, but this approach is also broadly applicable. In contrast
to downstream vision tasks (e.g., classification) that require the extraction of compact features (i.e.,
the interpretation of input) from the output of neural networks, contrastive representation learning
employs the principle of learning representations of the input data by comparing and contrasting it
with other similar and dissimilar examples. Since this loss only refers to layer activations, it can be
attached to any encoder layer. When applied to residual networks, we expect the effect of applying
the loss on successive layers to be progressive. This motivates our Federated Layer-wise Learning
method, as depicted in Fig. 1(a).

The proposed method divides the holistic training process into several phases and progressively
grows the model in an incremental schedule, starting from the shallow layers and moving to deeper
layers. Each layer is trained for a predefined number of communication rounds before proceeding
to the next layer. We only need to compute gradients and upload them to the server for the active
layer, which simultaneously reduces memory usage, compute, and communication costs. We can
control resource usage by varying the number of active and fixed layers during training, potentially
treating multiple layers as active at a given round. As an aside, in cross-silo FL (where clients par-
ticipate repeatedly in training) the fact that only one active layer is being trained enables us to avoid
communicating the rest of the model to devices on most rounds, further reducing communication.

2.2 DEPTH DROPOUT

While the proposed Federated Layer-wise Learning significantly alleviates resource usage, our target
scenario is cross-device FL, in which only a relatively small subset of active clients are selected
from a large pool of participants. It is likely that a given client will not be selected twice during the
entire federated training process (Wang et al., 2021). Thus, it is necessary to download both fixed
and active layers from the server to the clients. This can still present a challenge for clients with
resource constraints, as downloading a large number of fixed layers and performing forward passes
can be computationally intensive at the end of the training process. To this end, we propose Depth
Dropout to address the increasing resource usage introduced by a large number of fixed layers.
Fig. 1(b) shows how to apply Depth Dropout to a 5-layer model with a budget of 3 layers. It begins
by progressively expanding the model to reach its maximum capacity, which in this case is 3 layers.
During the initial three phases, we perform standard layer-wise training. In the last two phases, we
randomly remove certain fixed layers. However, the first layer, which includes Transformer patch
encoding and position embedding, is never removed. For example, in phase 4, we have the option
to remove either layer 1 or layer 2, while in phase 5, we have three candidates to remove. This
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randomization process is akin to the Dropout technique used in neural networks, and is only applied
during training. During inference, the full model with 5 layers is utilized.

3 EXPERIMENTS

Datasets and Implementation We partition the standard CIFAR-100 (Krizhevsky et al., 2009)
training set into 125 clients to simulate a cross-device FL scenario. The original test set in CIFAR-
100 (Krizhevsky et al., 2009) is considered the global test set used to measure performance. ViT-
Ti/16 (Dosovitskiy et al., 2020) is used as the representation learning backbone. All models are
trained using the following settings: SGD optimizer for the server and clients; client learning rate of
1× 10−3; batch size of 16; 32 active clients per round.

The Effectiveness of Layer-wise Training Here we compare our approach with federated end-
to-end learning on standard benchmarks. Results with different setups on CIFAR-100 are shown in
Table 1. We can make the following observations: (i) Both models pre-trained by Federated Layer-
wise Learning and federated end-to-end learning can significantly outperform the model without
pre-training, indicating the effectiveness of self-supervised representation learning in federated set-
tings. (ii) While the Federated Layer-wise Learning approach is an approximation of federated
end-to-end learning, it can achieve performance on par with the end-to-end method in downstream
evaluation tasks. In particular, the performance gap is less than 1% when using the representation
from the last layer (layer 12) of the network. (iii) we found that intermediate representations from
the Federated Layer-wise Learning model performed better than those from the federated end-to-
end learning model in certain downstream tasks. For example, in a linear downstream task using the
representation from layer 3, the Federated Layer-wise Learning model achieved 28.3% accuracy,
while the federated end-to-end learning model achieved 23.9%. This trend was also observed in
other downstream tasks using different intermediate representations. This superior performance of
intermediate representations is due to the contrastive loss being applied to all layers during the layer-
wise pre-training process. These results suggest that models trained using the proposed method can
easily compose sub-models of varying complexities.

We conducted additional experiments to further investigate the effect of model size (number of
layers) and number of training rounds per layer on the performance of Federated Layer-wise and
end-to-end learning. The results of these experiments are shown in Figure 2(a). Increasing the num-
ber of layers generally led to improved performance for both learning approaches. We also found
that the difference in performance between the two approaches was minimal when the number of
training rounds per layer was small (4k) but became more pronounced when the number of training
rounds per layer was increased (12k). Based on these results, it appears that layer-wise learning
may require slightly more training rounds per layer to reach the same performance as end-to-end
learning. This may be due to the fact that layer-wise learning is an approximation of end-to-end
learning. However, the performance gap between the two approaches is generally less than 1%.

Table 1: Experimental results on CIFAR-100 with different pre-training strategies. For image clas-
sification, we report standard Top-1 accuracy (%).

Downstream Linear Finetune
Representation From Layer 1 Layer 3 Layer 6 Layer 12 Layer 1 Layer 3 Layer 6 Layer 12

Pre-training Method Federated Layer-wise Learning
Accuracy 25.3 28.3 29.2 29.8 30.1 35.6 37.2 37.8

Pre-training Method Federated End-to-end Learning
Accuracy 18.0 23.9 27.8 30.3 25.4 32.2 35.7 38.6

Pre-training Method Training from scratch (Without Pre-training)
Accuracy 9.2 10.0 10.5 11.3 18.7 24.2 27.6 29.2

The Effectiveness of Depth Dropout. We evaluate Depth Dropout with Federated Layer-wise
Learning. We conducted two sets of experiments: applying Depth Dropout to a 6-layer model and
a 12-layer model, with a fixed dropout rate of 50% (meaning half of the fixed layers were dropped).
The results, shown in Tables 2 and 3, demonstrate that Depth Dropout does not significantly impact
model performance. For example, the 6-layer model with Depth Dropout achieved 37.0% accuracy

4



ICLR 2023 Practical ML for Developing Countries Workshop (PML4DC)

(a) (b)

Figure 2: (a) Comparison between Federated Layer-wise Learning (FLL) and federated end-to-end
learning (FEL) under different numbers of training rounds and model sizes. Results are reported
on CIFAR-100 with downstream finetuning evaluation. (b) Resource usage comparison of a client
per-round after combining Federated Layer-wise Learning and Depth Dropout.

Table 2: Accuracy of depth dropout with Federated Layer-wise Learning, under finetuning down-
stream evaluation. The budget specifies the max number of layers involved in training.

Model Size 6 layers 6 layers
(Budget: 3 layers) 3 layers 12 layers 12 layers

(Budget: 6 layers) 6 layers

Accuracy 37.2 37.0 32.8 37.8 37.6 37.2

Table 3: Accuracy of depth dropout with Federated Layer-wise Learning, under linear downstream
evaluation. The budget specifies the max number of layers involved in training.

Model Size 6 layers 6 layers
(Budget: 3 layers) 3 layers 12 layers 12 layers

(Budget: 6 layers) 6 layers

Accuracy 29.2 29.1 28.3 29.8 29.7 29.2

after finetuning, while the 6-layer model trained with only Layer-wise Learning achieved 37.2%
accuracy. We observed similar results for the 12-layer model with Depth Dropout, which achieved
37.6% accuracy after finetuning, compared to 37.8% for the model trained with normal Layer-wise
Learning. Additionally, Depth Dropout significantly reduced resource usage. It is worth noting that
the resource usage of the 12-layer model with a budget of 6 layers was equivalent to the resource
usage of a 6-layer model without Depth Dropout. As shown in Fig. 2, depth dropout reduced the
upper bounds of resource usage in all three categories, especially communication cost. The original
upper bound for Layer-wise training was 54%, but it was reduced to 29% when the dropout rate was
set to 50%.

4 CONCLUSION

Our study presents Federated Layer-wise Learning for devices with limited resources, which si-
multaneously reduces the demands on memory, computation, and communication for individual
clients without significantly compromising performance in comparison to end-to-end training. We
demonstrate that our proposed Depth Dropout technique is an effective complement to Federated
Layer-wise Learning, as it further reduces resource usage across all categories with minimal loss of
performance, even when dropping half of the fixed layers. Future work can evaluate these methods
on larger-scale and naturally partitioned datasets, which would enable more realistic analysis of gen-
eralization performance across devices (Yuan et al., 2021). Additionally, we intend to investigate the
effects of varying dropout rate for the Depth Dropout technique. Furthermore, our method can be
integrated with other memory-efficient training techniques, such as model compression (Deng et al.,
2020) and activation paging (Patil et al., 2022) to potentially further reduce resource usage.
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