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ABSTRACT

Most language models are primarily pretrained on English text, limiting their use
for other languages. As the model sizes grow, the performance gap between English
and other languages with fewer compute and data resources increases even further.
Consequently, more resource-efficient training methods are needed. To address this
problem, we introduce a cross-lingual and progressive transfer learning approach,
called CLP-Transfer, that transfers models from a source language, for which
pretrained models are available to a new target language. As opposed to prior work,
which focused on the cross-lingual transfer, we extend the transfer to the model
size. Given a pretrained model in a source language, we aim for a same-sized
model in a target language. Instead of training a model from scratch, we exploit
a smaller model that is in the target language but requires much fewer resources.
Both small and source models are then used to initialize the token embeddings
of the larger model based on the overlapping vocabulary of the source and target
language. All remaining weights are reused from the model in the source language.
This approach outperforms the sole cross-lingual transfer and can save up to 80%
of the training steps compared to the random initialization.

1 INTRODUCTION

Language models (LMs) based on the Transformer architecture (Vaswani et al., 2017) dominate
today’s NLP. These models are typically pretrained on primarily English text (Zhang et al., 2022;
Black et al., 2022), except for a few multilingual models (Scao et al., 2022; Lin et al., 2021; Shliazhko
et al., 2022). Given that multilingual models have been shown to perform suboptimal compared to
monolingual ones (Conneau et al., 2020; Nozza et al., 2020), other languages than English benefit
less from the recent progress in NLP. As the model sizes grow, the performance gap between the
models for English and other languages with fewer resources increases even further. This gap is
emphasized by Hoffmann et al. (2022), as they show that model performance is not only bound by
computing resources but mainly by data. Consequently, more resource-efficient training methods are
needed to bridge the gap for languages with fewer resources available.

Transfer learning is generally known to improve the training efficiency of various machine learning
problems (Houlsby et al., 2019). Regarding LMs, efficient methods for task, language, or domain
adaption have been proposed (Pfeiffer et al., 2020; Guo et al., 2022) To obtain monolingual LMs
for low-resource languages, Minixhofer et al. (2022) and de Vries & Nissim (2021) have shown
that available pretrained models can be recycled. These cross-lingual transfer learning approaches
reduce the training effort. However, they only transfer across languages and neglect the sizes of the
LMs. While training a large model may not be feasible in a low-resource setting, training a small or
medium model is likely possible, as demonstrated by AraGPT2 (Antoun et al., 2021), CamemBERT
(Martin et al., 2020), or Finnish BERT (Virtanen et al., 2019).

This paper presents CLP-Transfer, which is a cross-lingual and progressive transfer learning approach.
As opposed to prior work, which focused on the cross-lingual transfer between two languages, we
extend the transfer to the dimension of the model size. Given a large and pretrained model in a source
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language, we aim for a same-sized model in a target language. Instead of training the large model in
the target language from scratch, we first train a smaller model that requires much fewer resources (or
reuse public models). Both small and source models are then used to initialize the token embeddings
of the large target model based on the overlapping vocabulary of the source and target language. All
remaining Transformer weights are reused from the large model in the source language.

We evaluate CLP-Transfer for decoder-only LMs based on GPT2 (Radford et al., 2019) and BLOOM
(Scao et al., 2022). We use Ukrainian or German as target languages. The source models are either in
English or multilingual. We find that CLP-Transfer outperforms the sole cross-lingual transfer and
can save up to 80% of the training steps compared to the random initialization.

2 RELATED WORK

Cross-lingual Transfer. Exploiting pretrained models or data across languages is a common
approach in NLP research (Zoph et al., 2016; Lin et al., 2019; Nguyen & Chiang, 2017). For instance,
Artetxe et al. (2020) proposed to replace the tokenizer and only train the token embeddings while
freezing other Transformer layers of a multilingual BERT model. Such a transfer approach produces
monolingual models that can be independently fine-tuned to specific languages. de Vries & Nissim
(2021) followed a similar approach to transfer a GPT2 model to a new language. Specifically, they
transfer English GPT2 to Dutch and Italian by exclusively relearning the token embeddings and not
the other model weights. This forces the LM to learn token embeddings that are aligned between
English and the target language. However, freezing most parameters also limits the model’s ability to
learn about the new language. More recently, Minixhofer et al. (2022) introduced the WECHSEL
method that uses bilingual dictionaries to map the token embeddings from the source to the target
language. It reuses the Transformer weights from the source model and continues training them.

Progressive Transfer. Going from a small to a larger model is also known as progressive growing
and was originally proposed to improve training stability. Simonyan & Zisserman (2014) showed that
starting from an efficient and small model and gradually increasing the model capacity yields more
stable training. The paradigm of progressive growth can also be used to accelerate model training
which has been shown for various model architectures. Karras et al. (2017) demonstrate this for
GANs, Graves (2016) for RNNs, and Gu et al. (2021) for BERT models. Furthermore, Gong et al.
(2019) grow a BERT model in terms of its depth, i.e., they use trained weights of a shallow model to
initialize a deeper model and achieve 25% shorter training time.

3 METHODOLOGY

Our objective is to obtain a large LMs M (large)
t with p(large) parameters for a target language t. To

increase the efficiency, we omit the standard from-scratch training approach, i.e., random initialization
of M (large)

t . Instead, our goal is to find a good initialization of the parameter weights of M (large)
t such

that training effort is reduced. To achieve this, we exploit an already pretrained large LM M (large)
s ,

also with p(large) parameters and the same model architecture but in a source language s, and a small
pretrained LM M (small)

t , with significantly fewer parameters p(small) << p(large) in the target language
t. The Transformer layer weights Wt from the large target model are initialized with the weights of
M (large)

s . Similarly, token embedding weights Vt for that the tokens that exist in both the target and
source language vocabulary are initialized with Vs. For the remaining token embeddings weights, a
combination of M (large)

s and M (small)
t is used. To get our approach to work, we rely on two assumptions

about the vocabularies and token embedding spaces of the source and target LMs.

3.1 ASSUMPTIONS

Shared vocabulary. Our approach relies on the tokenizers of source and target languages sharing a
substantial fraction of their vocabulary. Given the tokenizer in the source and target language with
their vocabularies Vs and Vt, we assume that the number of tokens occurring in both vocabularies
Vs∩Vt is significantly larger than zero, i.e., |Vs∩Vt| >> 0. Languages with the same script and from
the same language family typically share more tokens, e.g., the overlap between German and English
is higher compared to Ukrainian and English. Notably, there will be always a certain overlap since
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Figure 1: Similarity of OPT’s token embeddings
measured as overlapping k-nearest neighbors.

Vocabulary s Vocabulary t |Vs ∩ Vt|
English GPT2 German (ours) 24.04%
Multil. BLOOM German (ours) 5.55%
Multil. XGLM German (ours) 2.62%
English GPT2 Ukrainian (ours) 7.51%
English GPT2 Arabic GPT2 6.95%
English GPT2 Finnish GPT2 13.71%
Multil. BLOOM Arabic GPT2 6.52%
Multil. BLOOM Finnish GPT2 3.54%

Table 1: Normalized number of overlapping vo-
cabulary tokens between different tokenizers.

Byte-Pair Encoding (Sennrich et al., 2016) is the tokenization algorithm. As shown in Tab. 1, the
assumption holds for our source and target combinations. While the English and German tokenizers
share 24% of their vocabulary, the multilingual BLOOM also shares 5% of the German vocabulary
despite its much larger vocabulary size. Ukrainian and English have 7% overlapping tokens.

Token embeddings. An LM has the token embeddings V ∈ R|V |×h that map each token v in the
vocabulary V to its vector representation v ∈ Rh with the hidden size of h. For larger models, the
hidden size h of the token embedding is typically also larger compared to one of smaller models,
i.e., h(large) > h(small). Despite varying in terms of h, we assume that relative positioning in the token
embedding space remains comparable across model sizes. The embeddings of a small model V (small)

would share spacial properties with the embeddings V (large) of a large model.

To test this assumption, we compare token embeddings with different sizes from English OPT models
(Zhang et al., 2022). Specifically, we retrieve the set of k-nearest neighbours Nv with k = 10 for
each token v and measure the overlapping neighbors for different model sizes, e.g., N (large)

v ∩N (small)
v .

This measure is normalized and computed for all available tokens. As shown in Fig. 1, OPT token
embeddings are comparable across model sizes. The similarity between embedding spaces increases
when the model size is comparable. We find even between the smallest and the largest model (125M
and 13B parameters) a 54% overlap. It is unclear why the 350M model has the lowest embedding
similarity compared to all other models, independent of their size difference.

3.2 CROSS-LINGUAL & PROGRESSIVE TRANSFER

The weights of a model in a language i are comprised of token embeddings Vi and the Transformer
weights Wi. We want to initialize V

(large)
t and W

(large)
t for our target language t and the large

model size. The Transformer weights are simply initialized with the ones from the source language s,
i.e., W (large)

t = W
(large)
s . To initialize V

(large)
t , we exploit V (large)

s and V
(small)
t , which are the

token embeddings of a smaller model in the target language. The embeddings of overlapping tokens
that simultaneously exist in the source and target vocabulary v ∈ Vs ∩ Vt are directly initialized with
the source embeddings: When a token is not part of the overlapping vocabulary v /∈ Vs ∩ Vt, we
initialize its embedding vt as the weighted average over the embeddings v̂ of the overlapping token:

vt =

vs, if v ∈ Vs ∩ Vt∑
v̂∈Vs∩Vt

v̂s

δ
(
v
(small)
t ,v̂

(small)
t

) , otherwise (1)

The weight δ aims to transfer the spacial properties from the small model to the large model and is
the normalized cosine similarity of the small embeddings of overlapping v and missing v̂ tokens:

δ(v, v̂) =
cos

(
v
(small)
t , v̂

(small)
t

)
∑

v̂′∈Vs∩Vt,
v′∈Vs∪Vt

cos
(
v
′(small)
t , v̂

′(small)
t

) (2)
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The intuition is those embeddings that are more similar in the E(small)
t should contribute more to the

construction of their corresponding token in the large model. This approach allows us to recycle the
pretrained weights of a source large model while preserving the spacial properties of the embedding
space of the target language and simultaneously adjusting it to the vocabulary of our target language.

4 EXPERIMENT DESIGN

We evaluate the CLP-Transfer approach by transferring the English GPT2 (Radford et al., 2019) and
multilingual BLOOM (Scao et al., 2022) to monolingual Ukrainian or German models. Both model
types are evaluated at different scales. More specifically, we grow the GPT2 model from 124M to
774M and 117M to 1.5B parameters and the BLOOM model from 1.5B to 6.4B parameters.

4.1 MODELS

Model Architectures. Both models (GPT2 and BLOOM) are decoder-only Transformer models
(Vaswani et al., 2017) trained with causal language modeling. GPT2 uses learned positional embed-
dings, whereas BLOOM uses ALiBi (Press et al., 2022). Another difference is that BLOOM applies
normalization on the token embedding layer to improve training stability.

In our experiments with GPT2, we aim for a monolingual Ukrainian model with 774M parameters
(GPT2-Large) and a German model with 1.5B parameters (GPT2-XL). The source models are the
English GPT2 models as provided by Radford et al. (2019). The small Ukrainian model is trained
from scratch by us. As the small German model, we use a GPT2-base model with 117M parameters
trained with WECHSEL (Minixhofer et al., 2022). Additionally, we conduct experiments with
BLOOM. For this experiment, our objective is the training of a German model based on BLOOM
with 7.1B parameters as the source model. The BLOOM 7.1B model has 30 layers, 32 attention
heads, and a hidden size of 4096. Our German BLOOM target model uses a different tokenizer with a
smaller vocabulary size (see below). Therefore, its token embedding layer contains fewer parameters
than the multilingual BLOOM model. As a result, the target model has only 6.4B parameters. The
small German model is a BLOOM model with 1.5B parameters trained with our method (24 layers,
16 attention heads, and a hidden size of 2048).

Tokenizers. All tokenizers use Byte-Pair Encoding (Sennrich et al., 2016). The vocabulary size of
English GPT2 is 50,257 tokens. BLOOM covers 46 natural languages and 13 programming languages.
Therefore, BLOOM’s vocabulary has 250,880 tokens, 5x larger than the one from English GPT2.
For our Ukrainian and German tokenizers, we opt for the same vocabulary sizes as the English one
(50,257 tokens) and train them on subsets of the respective training sets.

4.2 BASELINES

We compare against from-scratch training and WECHSEL. (1) With from-scratch training, the
LM is trained from scratch in the target language with randomly initialized weights. The from-
scratch baseline for the BLOOM experiments (BLOOM 6.7B) was trained with minor changes
to the transferred BLOOM-CLP 6.4B model. The baseline BLOOM 6.7B follows the model size
proposed by Brown et al. (2020). It has 32 layers instead of 30 layers and was not trained on GC4
and Open Legal Data but on other German datasets. (2) The WECHSEL method as introduced
by Minixhofer et al. (2022) applies cross-lingual transfer to monolingual LMs. WECHSEL uses
bilingual dictionaries to map the token embeddings from a source language to a target language and
reuses the Transformer weights from the source model.

5 RESULTS

We show the results for one monolingual Ukrainian and two German models, i.e., GPT2 774M, GPT2
1.5B, and BLOOM 6.4B. The models are evaluated with validation perplexity w.r.t. consumed tokens.

Transfering GPT2. The first experiment evaluates CLP-Transfer by training a Ukrainian and a
German GPT2 model. For German, CLP-Transfer is compared against from-scratch training and
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(a) GPT2-Large Ukrainian (774M)
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(b) GPT2-XL German (1.5B)
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Figure 2: Validation PPL comparing CLP-Transfer, from-scratch, and WECHSEL (cross-lingual
transfer). CLP-Transfer achieves the same PPL as from-scratch but already after 20% of tokens for
BLOOM (32% of tokens for GPT2-Large; 50% of tokens for GPT2-XL); see the dashed line.

WECHSEL’s cross-lingual transfer method. Fig. 2b shows the validation perplexity (PPL) of each
method in relation to the consumed training tokens. We find that CLP-Transfer outperforms the
baselines. The validation PPL of CLP-Transfer is constantly the lowest of all three methods. At
the end of the German training (after 30.8B tokens), CLP-Transfer yields a 12.8 PPL, followed
by WECHSEL with 13.5 PPL. The worst result has the from-scratch training with 15.1 PPL. CLP-
Transfer achieve the same PPL as from-scratch training but already have 50% of the consumed tokens.
During the first phase of the training (0-5B tokens), the improvements of CLP-Transfer are most
significant. These results demonstrate that our transfer learning approach is superior to from-scratch
training even at the end of the training or can achieve the same results more efficiently. Moreover,
using a small model in the target language yields further efficiency gains compared to WECHSEL’s
sole cross-lingual transfer. Fig. 2a shows a similar outcome for the Ukrainian models, i.e., after 5.4B
tokens CLP-Transfer yields 11.1 PPL compared to 14.7 PPL through from-scratch training. This
demonstrates that CLP-Transfer can even transfer models across languages with different scripts
(from Latin to Cyrillic).

Transfering BLOOM. The second experiment applies CLP-Transfer on a multilingual BLOOM
model to train a monolingual German model with 6.4B parameters. In this experiment, we compare
only against from-scratch training. As shown in Fig. 2c, CLP-Transfer again outperforms the from-
scratch training. After complete training on 50.4B tokens, CLP-Transfer yields a 44.1 PPL, whereas
from-scratch training is significantly worse with 69.3 PPL. 20% of training tokens are sufficient for
CLP-Transfer to be on par with from-scratch training. This suggests that the efficiency gains from
CLP-Transfer are even more prevalent at 6B compared to 1.5B parameters. We attribute this outcome
to the training data containing too few tokens for 6B models. The validation PPL is still decreasing
at the end of the training suggesting that the model is not fully trained yet. According to Hoffmann
et al. (2022), a compute-optimal LM at the 6B scale would require approx. 142B tokens which our
BLOOM model training did not consume. The German GPT2-XL training is much closer to being
compute-optimal (33B tokens).

6 CONCLUSION

CLP-Transfer is a cross-lingual and progressive transfer learning approach for the efficient training of
large LMs. Our experiments demonstrate that monolingual Ukrainian or German models initialized
with CLP-Transfer reduce the training effort. The CLP-Transfer models achieve better results when
trained on the same number of tokens than from-scratch training or WECHSEL transfer. To obtain
the same perplexity as from-scratch training, CLP-Transfer needs only 20-50% of the original token
count, depending on model type and language. This yields up to an 80% reduction in training effort.
Such a reduction lowers the barriers to the training of large LMs in low-resource settings. We make
code, model checkpoints, and a Web-based demo available.1

1Demo: https://opengptx.dfki.de; Repository: https://github.com/malteos/clp-transfer
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Kyunghyun Cho, and Iryna Gurevych. AdapterHub: A Framework for Adapting Transformers. pp.
46–54, 2020. doi: 10.18653/v1/2020.emnlp-demos.7.

Ofir Press, Noah A. Smith, and Mike Lewis. Train Short, Test Long: Attention with Linear Biases
Enables Input Length Extrapolation, April 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners. arXiv, 2019.

Georg Rehm (ed.). European Language Grid: A Language Technology Platform for Multilingual
Europe. Cognitive Technologies. Springer, Cham, Switzerland, January 2023.

Georg Rehm and Andy Way (eds.). European Language Equality: A Strategic Agenda for Digital
Language Equality. Cognitive Technologies. Springer, June 2023. In print.

Teven Le Scao, Thomas Wang, Daniel Hesslow, Lucile Saulnier, Stas Bekman, M Saiful Bari,
Stella Biderman, Hady Elsahar, Niklas Muennighoff, Jason Phang, Ofir Press, Colin Raffel,
Victor Sanh, Sheng Shen, Lintang Sutawika, Jaesung Tae, Zheng Xin Yong, Julien Launay, and
Iz Beltagy. What Language Model to Train if You Have One Million GPU Hours? 2022. doi:
10.48550/ARXIV.2210.15424.

Dietmar Schabus, Marcin Skowron, and Martin Trapp. One million posts: A data set of german
online discussions. In Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR), pp. 1241–1244, Tokyo, Japan, August 2017.
doi: 10.1145/3077136.3080711.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 1715–1725, Berlin, Germany, August 2016. Association for
Computational Linguistics. doi: 10.18653/v1/P16-1162. URL https://aclanthology.org/P16-1162.

Oleh Shliazhko, Alena Fenogenova, Maria Tikhonova, Vladislav Mikhailov, Anastasia Kozlova, and
Tatiana Shavrina. mGPT: Few-Shot Learners Go Multilingual, April 2022.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.
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A DATASETS

Figure 3: Comparison between the available language resources for English, Ukrainian, and German.

Depending on language and model type different training datasets are used. The datasets represent
the Ukrainian and German data that is easily accessible. The small size of the datasets illustrates
the lack of resources for Ukrainian and German. Fig. 3 shows the general gaps between these three
languages w.r.t. the available resources in the European Language Grid (Rehm, 2023) as measured by
the dashboard2 implemented by the European Language Equality project (Rehm & Way, 2023).

Ukrainian GPT2 Training. The Ukranian GPT2-CLP training relies on Web-crawled data from
the Ukranian subset of OSCAR v2109, v2201, and v2301 (Suárez et al., 2019). Wikimedia dumps
are also used (date: 2023-03-01; Wikipedia, Wikibooks, Wikinews, Wikiquote, Wikisource, and
Wikivoyage). We split the data into a 99:1 train-validation set. The Ukrainian training dataset
comprises approximately 2.7B tokens. The data was used twice (two epochs).

German GPT2 Training. The German GPT2-CLP training relies exclusively on Web-crawled data
from the German subset of OSCAR v2019 (Suárez et al., 2019).3 We follow the methodology from
Minixhofer et al. (2022) to construct a separate training and validation dataset. Specifically, we used
the first 4 GB of OSCAR as the training dataset, then the next 0.4GB as the validation dataset. The
GPT2 training dataset comprises approximately 30.8B tokens.

BLOOM Training. To train the German BLOOM-CLP 6.4B model, we construct another dataset.
We use again Web-crawled content from the German subset OSCAR but the more recent version
of v2201 (excluding content tagged as header, footer, noisy, or adult) and from the GC4 Corpus4

(including only the head and middle parts). As both data sources originate from CommonCrawl and
potentially have duplicated content, we deduplicate the Web-crawled content using the approach from
Lee et al. (2022). We complement the Web data with German court decisions from Open Legal Data
(Ostendorff et al., 2020). The BLOOM training dataset comprises approximately 50.4B tokens.

Evaluation Datasets. We evaluate the German models for their language modeling ability using
the OSCAR validation set from the GPT2 training5, and for zero-shot learning on German down-
stream tasks. The tasks are sentiment analysis from GermEval 2017 (Wojatzki et al., 2017), hate

2https://live.european-language-grid.eu/catalogue/dashboard
3https://hf.co/datasets/oscar (subset: unshuffled deduplicated de)
4https://german-nlp-group.github.io/projects/gc4-corpus.html
5https://hf.co/datasets/malteos/wechsel de
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speech classification from GermEval 2018 (Wiegand & Siegel, 2018), news topic classification from
GNAD10 (Schabus et al., 2017), paraphrase identification from PAWSX (Yang et al., 2019), natural
language inference from XNLI (Conneau et al., 2018), and stance detection from X-Stance (Vamvas
& Sennrich, 2020). All evaluation tasks are implemented using the lm-evaluation-harness
framework (Gao et al., 2021).6

Task → Oscar GEval17 GEval18 GNAD10 PAWSX XNLI XStance Avg.
Model ↓ / Metric → PPL (↓) F1 (↑) F1 (↑) F1 (↑) F1 (↑) Acc. (↑) F1 (↑) (↑)

Random - 0.33 0.50 0.11 0.50 0.33 0.50 0.38

Multilingual models:
mGPT 1.3B 2274.80 0.36 0.51 0.08 0.49 0.37 0.49 0.38
XGLM 564M 179.59 0.05 0.40 0.05 0.46 0.44 0.50 0.32
XGLM 1.7B 105.10 0.04 0.35 0.19 0.58 0.45 0.40 0.34
XGLM 7.5B 66.74 0.51 0.51 0.06 0.50 0.39 0.41 0.40

Monolingual German models:
GPT2-WECHSEL 117M 594.40 0.04 0.51 0.18 0.49 0.40 0.51 0.35
GPT2-XL-WECHSEL 1.5B 157.95 0.05 0.55 0.10 0.41 0.49 0.34 0.32
GPT2-XL-CLP 1.5B 46.33 0.05 0.02 0.07 0.46 0.49 0.34 0.24
GPT2-XL 1.5B f-s. 187.71 0.04 0.51 0.15 0.52 0.47 0.34 0.34

BLOOM-CLP 1.5B 49.80 0.04 0.14 0.11 0.44 0.48 0.38 0.26
BLOOM-CLP 6.4B (50B t.) 44.09 0.56 0.51 0.13 0.52 0.43 0.44 0.43
BLOOM 6.7B f-s. (50B t.) 69.32 0.51 0.52 0.13 0.41 0.38 0.42 0.39
BLOOM 6.7B f-s. (72B t.) 64.03 0.56 0.51 0.09 0.40 0.37 0.49 0.40

Table 2: Evaluation results of German downstream tasks in a zero-shot setting. The average score
excludes the OSCAR validation perplexity (PPL). Smaller models are on par or worse than the
random baseline. Our transfer model BLOOM-CLP 6.4B achieves the best results on average.

B DOWNSTREAM EVALUATION

Even though we trained the models exclusively with a causal language modeling objective, we want
them to perform well on other downstream tasks, as shown by Brown et al. (2020). Hence, we
compare the models and additional baselines on six German benchmarks in a zero-shot setting.

We compare the monolingual German models against multilingual models trained on German data.
We evaluate XGLM (Lin et al., 2021) ranging from 564M to 7.5B parameters and mGPT (Shliazhko
et al., 2022) with 1.3B parameters. XGLM was trained on approx. 5.4% German data and mGPT on
8.2% German data.

Given that the from-scratch trained BLOOM 6.7B model (50B tokens) is presumable under-trained,
we add an additional variation that was trained on 22B more tokens, i.e., BLOOM 6.7B (72B tokens).
The evaluated tasks are sentiment analysis (GermEval 2017), hate speech classification (GermEval
2018), news topic classification (GNAD10), paraphrase identification (PAWSX), natural language
inference (XNLI), and stance detection (X-Stance). Tab. 2 reports the validation PPL on German
OSCAR5, the results for the individual tasks, and the average over the tasks.

The zero-shot performance of all models is disappointing. Most models achieve results on par or
worse than the random baseline. Only the largest models (more than 6B parameters) are better than
the random baseline on average. The BLOOM-CLP 6.4B model has the best average score of 0.43,
followed by the from-scratch trained BLOOM 6.7B (72B tokens) and XGLM 7.5B.

We hypothesize that this outcome is due to the model size and token count being still too small. Studies
from Black et al. (2022) or Shliazhko et al. (2022) report similar near-random results for models
with comparable sizes. Another reason might be the poorly translated test datasets that produce less
meaningful results. For instance, PAWSX contains a large fraction of machine-translated samples.
To improve the downstream task performance, promising approaches are prompt engineering, i.e.,
tailoring the prompts more to the German language, and multi-task fine-tuning, as demonstrated by
BLOOMZ (Muennighoff et al., 2022) or FLAN (Wei et al., 2022).

6https://github.com/OpenGPTX/lm-evaluation-harness
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